• A prosurvival transcriptional feedback loop via p300 enables acute tolerance to BET inhibition.

  • BET followed by p300 inhibition improves cytotoxicity in AML and is optimally deployed during early stages of resistance to BET inhibitors.

Abstract

Initial clinical trials with drugs targeting epigenetic modulators, such as bromodomain and extraterminal protein (BET) inhibitors, demonstrate modest results in acute myeloid leukemia (AML). A major reason for this involves an increased transcriptional plasticity within AML, which allows the cells to escape therapeutic pressure. In this study, we investigated the immediate epigenetic and transcriptional responses after BET inhibition and demonstrated that BET inhibitor–mediated release of bromodomain-containing protein 4 from chromatin is accompanied by acute compensatory feedback that attenuates downregulation or even increases the expression of specific transcriptional modules. This adaptation is marked at key AML maintenance genes and is mediated by p300, suggesting a rational therapeutic opportunity to improve outcomes by combining BET and p300 inhibition. p300 activity is required during all steps of resistance adaptation; however, the specific transcriptional programs that p300 regulates to induce resistance to BET inhibition differ, in part, between AML subtypes. As a consequence, in some AMLs, the requirement for p300 is highest during the earlier stages of resistance to BET inhibition, when p300 regulates transitional transcriptional patterns that allow leukemia-homeostatic adjustments. In other AMLs, p300 shapes a linear resistance to BET inhibition and remains critical throughout all stages of the evolution of resistance. Altogether, our study elucidates the mechanisms that underlie an “acute” state of resistance to BET inhibition, achieved through p300 activity, and how these mechanisms remodel to mediate “chronic” resistance. Importantly, our data also suggest that sequential treatment with BET and p300 inhibition may prevent resistance development, thereby improving outcomes.

1.
Thomas
D
,
Majeti
R
.
Biology and relevance of human acute myeloid leukemia stem cells
.
Blood
.
2017
;
129
(
12
):
1577
-
1585
.
2.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
3.
Assi
SA
,
Imperato
MR
,
Coleman
DJL
, et al
.
Subtype-specific regulatory network rewiring in acute myeloid leukemia
.
Nat Genet
.
2019
;
51
(
1
):
151
-
162
.
4.
Yun
H
,
Narayan
N
,
Vohra
S
, et al
.
Mutational synergy during leukemia induction remodels chromatin accessibility, histone modifications and three-dimensional DNA topology to alter gene expression
.
Nat Genet
.
2021
;
53
(
10
):
1443
-
1455
.
5.
Arber
DA
,
Orazi
A
,
Hasserjian
RP
, et al
.
International Consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data
.
Blood
.
2022
;
140
(
11
):
1200
-
1228
.
6.
Dawson
M a
,
Prinjha
RK
,
Dittmann
A
, et al
.
Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia
.
Nature
.
2011
;
478
(
7370
):
529
-
533
.
7.
Dawson
MA
,
Kouzarides
T
,
Huntly
BJP
.
Targeting epigenetic readers in cancer
.
N Engl J Med
.
2012
;
367
(
7
):
647
-
657
.
8.
Zuber
J
,
Shi
J
,
Wang
E
, et al
.
RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia
.
Nature
.
2011
;
478
(
7370
):
524
-
528
.
9.
Jang
MK
,
Mochizuki
K
,
Zhou
M
,
Jeong
HS
,
Brady
JN
,
Ozato
K
.
The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription
.
Mol Cell
.
2005
;
19
(
4
):
523
-
534
.
10.
Hargreaves
DC
,
Horng
T
,
Medzhitov
R
.
Control of inducible gene expression by signal-dependent transcriptional elongation
.
Cell
.
2009
;
138
(
1
):
129
-
145
.
11.
Winter
GE
,
Mayer
A
,
Buckley
DL
, et al
.
BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment
.
Mol Cell
.
2017
;
67
(
1
):
5
-
18.e19
.
12.
Kanno
T
,
Kanno
Y
,
Leroy
G
, et al
.
BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones
.
Nat Struct Mol Biol
.
2014
;
21
(
12
):
1047
-
1057
.
13.
Dawson
MA
,
Gudgin
EJ
,
Horton
SJ
, et al
.
Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia
.
Leukemia
.
2014
;
28
(
2
):
311
-
320
.
14.
Bell
CC
,
Fennell
KA
,
Chan
YC
, et al
.
Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia
.
Nat Commun
.
2019
;
10
(
1
):
2723
.
15.
Fong
CY
,
Gilan
O
,
Lam
EYN
, et al
.
BET inhibitor resistance emerges from leukaemia stem cells
.
Nature
.
2015
;
525
(
7570
):
538
-
542
.
16.
Rathert
P
,
Roth
M
,
Neumann
T
, et al
.
Transcriptional plasticity promotes primary and acquired resistance to BET inhibition
.
Nature
.
2015
;
525
(
7570
):
543
-
547
.
17.
Cousin
S
,
Blay
JY
,
Garcia
IB
, et al
.
Safety, pharmacokinetic, pharmacodynamic and clinical activity of molibresib for the treatment of nuclear protein of the testis carcinoma and other cancers: results of a phase I/II open-label, dose escalation study
.
Int J Cancer
.
2022
;
150
(
6
):
993
-
1006
.
18.
Dawson
MA
,
Borthakur
G
,
Huntly
B
, et al
.
A phase I/II open-label study of molibresib for the treatment of relapsed/refractory hematologic malignancies
.
Clin Cancer Res
.
2023
;
29
(
4
):
711
-
722
.
19.
Stuani
L
,
Sabatier
M
,
Saland
E
, et al
.
Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia
.
J Exp Med
.
2021
;
218
(
5
):
e20200924
.
20.
Cai
SF
,
Chu
SH
,
Goldberg
AD
, et al
.
Leukemia cell of origin influences apoptotic priming and sensitivity to lsd1 inhibition
.
Cancer Discov
.
2020
;
10
:
1500
-
1513
.
21.
Huang
X
,
Yan
J
,
Zhang
M
, et al
.
Targeting epigenetic crosstalk as a therapeutic strategy for EZH2-aberrant solid tumors
.
Cell
.
2018
;
175
(
1
):
P186
-
P199.e19
.
22.
Guo
L
,
Li
J
,
Zeng
H
, et al
.
A combination strategy targeting enhancer plasticity exerts synergistic lethality against BETi-resistant leukemia cells
.
Nat Commun
.
2020
;
11
(
1
):
740
.
23.
Saenz
DT
,
Fiskus
W
,
Mill
CP
, et al
.
Mechanistic basis and efficacy of targeting β-catenin-TCF7L2-JMJD6-MYC axis to overcome resistance to BET inhibitors
.
Blood
.
2020
;
135
(
15
):
1255
-
1269
.
24.
Boyd
AL
,
Aslostovar
L
,
Reid
J
, et al
.
Identification of chemotherapy-induced leukemic-regenerating cells reveals a transient vulnerability of human AML recurrence
.
Cancer Cell
.
2018
;
34
(
3
):
P483
-
P498.e5
.
25.
Shlush
LI
,
Mitchell
A
,
Heisler
L
, et al
.
Tracing the origins of relapse in acute myeloid leukaemia to stem cells
.
Nature
.
2017
;
547
(
7661
):
104
-
108
.
26.
Yan
M
,
Kanbe
E
,
Peterson
LF
, et al
.
A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis
.
Nat Med
.
2006
;
12
(
8
):
945
-
949
.
27.
Ben-Ami
O
,
Friedman
D
,
Leshkowitz
D
, et al
.
Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1
.
Cell Rep
.
2013
;
4
(
6
):
1131
-
1143
.
28.
Li
Y
,
Wang
H
,
Wang
X
, et al
.
Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21) acute myeloid leukemia
.
Blood
.
2016
;
127
(
2
):
233
-
242
.
29.
Ptasinska
A
,
Assi
SA
,
Martinez-Soria
N
, et al
.
Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal
.
Cell Rep
.
2014
;
8
(
6
):
1974
-
1988
.
30.
Goyama
S
,
Schibler
J
,
Cunningham
L
, et al
.
Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells
.
J Clin Invest
.
2013
;
123
(
9
):
3876
-
3888
.
31.
Lin
S
,
Mulloy
JC
,
Goyama
S
.
RUNX1-ETO leukemia
.
Adv Exp Med Biol
.
2017
;
962
:
151
-
173
.
32.
Sun
XJ
,
Wang
Z
,
Wang
L
, et al
.
A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis
.
Nature
.
2013
;
500
(
7460
):
93
-
97
.
33.
Weinert
BT
,
Narita
T
,
Satpathy
S
, et al
.
Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome
.
Cell
.
2018
;
174
(
1
):
231
-
244.e12
.
34.
Wang
L
,
Gural
A
,
Sun
XJ
, et al
.
The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation
.
Science
.
2011
;
333
(
6043
):
765
-
769
.
35.
Saeed
S
,
Logie
C
,
Francoijs
KJ
, et al
.
Chromatin accessibility, p300, and histone acetylation define PML-RARα and AML1-ETO binding sites in acute myeloid leukemia
.
Blood
.
2012
;
120
(
15
):
3058
-
3068
.
36.
Roe
JS
,
Mercan
F
,
Rivera
K
,
Pappin
DJ
,
Vakoc
CR
.
BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia
.
Mol Cell
.
2015
;
58
(
6
):
1028
-
1039
.
37.
Muhar
M
,
Ebert
A
,
Neumann
T
, et al
.
SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis
.
Science
.
2018
;
360
(
6390
):
800
-
805
.
38.
Vannam
R
,
Sayilgan
J
,
Ojeda
S
, et al
.
Targeted degradation of the enhancer lysine acetyltransferases CBP and p300
.
Cell Chem Biol
.
2021
;
28
(
4
):
503
-
514.e12
.
39.
Ianevski
A
,
He
L
,
Aittokallio
T
,
Tang
J
.
SynergyFinder: a web application for analyzing drug combination dose-response matrix data
.
Bioinformatics
.
2017
;
33
(
15
):
2413
-
2415
.
40.
Mupo
A
,
Celani
L
,
Dovey
O
, et al
.
A powerful molecular synergy between mutant nucleophosmin and Flt3-ITD drives acute myeloid leukemia in mice
.
Leukemia
.
2013
;
27
(
9
):
1917
-
1920
.
41.
Hua
X
,
Zhang
H
,
Jia
J
,
Chen
S
,
Sun
Y
,
Zhu
X
.
Roles of S100 family members in drug resistance in tumors: status and prospects
.
Biomed Pharmacother
.
2020
;
127
:
110156
.
42.
Spijkers-Hagelstein
JAP
,
Schneider
P
,
Hulleman
E
, et al
.
Elevated S100A8/S100A9 expression causes glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia
.
Leukemia
.
2012
;
26
(
6
):
1255
-
1265
.
43.
Karjalainen
R
,
Liu
M
,
Kumar
A
, et al
.
Elevated expression of S100A8 and S100A9 correlates with resistance to the BCL-2 inhibitor venetoclax in AML
.
Leukemia
.
2019
;
33
(
10
):
2548
-
2553
.
44.
Sasca
D
,
Szybinski
J
,
Schüler
A
, et al
.
NCAM1 (CD56) promotes leukemogenesis and confers drug resistance in AML
.
Blood
.
2019
;
133
(
21
):
2305
-
2319
.
45.
Iriyama
N
,
Hatta
Y
,
Takeuchi
J
, et al
.
CD56 expression is an independent prognostic factor for relapse in acute myeloid leukemia with t(8;21)
.
Leuk Res
.
2013
;
37
(
9
):
1021
-
1026
.
46.
Raspadori
D
,
Damiani
D
,
Lenoci
M
, et al
.
CD56 antigenic expression in acute myeloid leukemia identifies patients with poor clinical prognosis
.
Leukemia
.
2001
;
15
(
8
):
1161
-
1164
.
47.
Burd
A
,
Levine
RL
,
Ruppert
AS
, et al
.
Precision medicine treatment in acute myeloid leukemia using prospective genomic profiling: feasibility and preliminary efficacy of the Beat AML Master Trial
.
Nat Med
.
2020
;
26
(
12
):
1852
-
1858
.
48.
Kantarjian
H
,
Kadia
T
,
DiNardo
C
, et al
.
Acute myeloid leukemia: current progress and future directions
.
Blood Cancer J
.
2021
;
11
(
2
):
41
.
49.
Norsworthy
KJ
,
Gao
X
,
Ko
CW
, et al
.
Response rate, event-free survival, and overall survival in newly diagnosed acute myeloid leukemia: US Food and Drug Administration trial-level and patient-level analyses
.
J Clin Oncol
.
2022
;
40
(
8
):
847
-
854
.
50.
Döhner
H
,
Wei
AH
,
Appelbaum
FR
, et al
.
Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN
.
Blood
.
2022
;
140
(
12
):
1345
-
1377
.
51.
Mohammad
HP
,
Barbash
O
,
Creasy
CL
.
Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer
.
Nat Med
.
2019
;
25
(
3
):
403
-
418
.
52.
Bates
SE
.
Epigenetic therapies for cancer
.
N Engl J Med
.
2020
;
383
(
7
):
650
-
663
.
53.
Bell
CC
,
Gilan
O
.
Principles and mechanisms of non-genetic resistance in cancer
.
Br J Cancer
.
2020
;
122
(
4
):
465
-
472
.
54.
Joshi
SK
,
Nechiporuk
T
,
Bottomly
D
, et al
.
The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance
.
Cancer Cell
.
2021
;
39
(
7
):
999
-
1014.e8
.
55.
Ptasinska
A
,
Assi
SA
,
Mannari
D
, et al
.
Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding
.
Leukemia
.
2012
;
26
(
8
):
1829
-
1841
.
56.
Lasko
LM
,
Jakob
CG
,
Edalji
RP
, et al
.
Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours
.
Nature
.
2017
;
550
(
7674
):
128
-
132
.
57.
Goodman
RH
,
Smolik
S
.
CBP/p300 in cell growth, transformation, and development
.
Genes Dev
.
2000
;
14
(
13
):
1553
-
1577
.
58.
Liu
X
,
Wang
L
,
Zhao
K
, et al
.
The structural basis of protein acetylation by the p300/CBP transcriptional coactivator
.
Nature
.
2008
;
451
(
7180
):
846
-
850
.
59.
Gattenloehner
S
,
Chuvpilo
S
,
Langebrake
C
, et al
.
Novel RUNX1 isoforms determine the fate of acute myeloid leukemia cells by controlling CD56 expression
.
Blood
.
2007
;
110
(
6
):
2027
-
2033
.
60.
Ellegast
JM
,
Alexe
G
,
Hamze
A
, et al
.
Unleashing cell-intrinsic inflammation as a strategy to kill AML blasts
.
Cancer Discov
.
2022
;
12
(
7
):
1760
-
1781
.
You do not currently have access to this content.
Sign in via your Institution