• Heme promotes venetoclax resistance, whereas inhibiting heme biosynthesis by targeting ferrochetalase, enhances venetoclax sensitivity.

  • Heme-induced venetoclax resistance is driven by activation of MEK and metabolic rewiring that increases de novo purine synthesis.

Abstract

We previously demonstrated that reduced intrinsic electron transport chain (ETC) activity predicts and promotes sensitivity to the B-cell lymphoma 2 (BCL-2) antagonist, venetoclax (Ven), in multiple myeloma (MM). Heme, an iron-containing prosthetic group and metabolite, is fundamental to maintaining ETC activity. Interrogation of the cyclin D1 group 2 subgroup of MM from the Relating Clinical Outcomes in MM to Personal Assessment of Genetic Profile (CoMMpass) trial (NCT01454297), which can be used as a proxy for Ven-sensitive MM (VS MM), shows reduced expression of the conserved heme biosynthesis pathway gene signature. Consistent with this, we identified that VS MM exhibits reduced heme biosynthesis and curiously elevated hemin (oxidized heme) uptake. Supplementation with hemin or protoporphyrin IX (heme lacking iron) promotes Ven resistance, whereas targeting ferrochetalase, the penultimate enzyme involved in heme biosynthesis, increases Ven sensitivity in cell lines and primary MM cells. Mechanistically, heme-mediated activation of prosurvival rapidly accelerated fibrosarcoma-rat sarcoma virus–mitogen-activated protein kinase (MEK) signaling and metabolic rewiring, increasing de novo purine synthesis, were found to contribute to heme-induced Ven resistance. Cotargeting BCL-2 and myeloid cell leukemia-1 suppresses heme-induced Ven resistance. Interrogation of the Multiple Myeloma Research Foundation CoMMpass study of patients shows increased purine and pyrimidine biosynthesis to corelate with poor progression-free survival and overall survival. Elevated heme and purine biosynthesis gene signatures were also observed in matched relapse refractory MM, underscoring the relevance of heme metabolism in therapy-refractory MM. Overall, our findings reveal, for the first time, a role for extrinsic heme, a physiologically relevant metabolite, in modulating proximity to the apoptotic threshold with translational implications for BCL-2 antagonism in MM therapy.

1.
Siegel
RL
,
Miller
KD
,
Fuchs
HE
,
Jemal
A
.
Cancer statistics, 2021
.
CA Cancer J Clin
.
2021
;
71
(
1
):
7
-
33
.
2.
Thomas
RL
,
Roberts
DJ
,
Kubli
DA
, et al
.
Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure
.
Genes Dev
.
2013
;
27
(
12
):
1365
-
1377
.
3.
Schoenwaelder
SM
,
Jarman
KE
,
Gardiner
EE
, et al
.
Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets
.
Blood
.
2011
;
118
(
6
):
1663
-
1674
.
4.
Touzeau
C
,
Dousset
C
,
Le Gouill
S
, et al
.
The Bcl-2 specific BH3 mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma
.
Leukemia
.
2014
;
28
(
1
):
210
-
212
.
5.
Kumar
SK
,
Vij
R
,
Kaufman
JL
, et al
.
Safety and efficacy of venetoclax (ABT-199/GDC-0199) monotherapy for relapsed/refractory multiple myeloma: phase 1 preliminary results
.
Blood
.
2015
;
126
(
23
). 4219-4219.
6.
Kumar
SK
,
Harrison
SJ
,
Cavo
M
, et al
.
Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): a randomised, double-blind, multicentre, phase 3 trial
.
Lancet Oncol
.
2020
;
21
(
12
):
1630
-
1642
.
7.
Peperzak
V
,
Vikström
I
,
Walker
J
, et al
.
Mcl-1 is essential for the survival of plasma cells
.
Nat Immunol
.
2013
;
14
(
3
):
290
-
297
.
8.
Gupta
VA
,
Barwick
BG
,
Matulis
SM
, et al
.
Venetoclax sensitivity in multiple myeloma is associated with B-cell gene expression
.
Blood
.
2021
;
137
(
26
):
3604
-
3615
.
9.
Deng
J
,
Carlson
N
,
Takeyama
K
,
Dal Cin
P
,
Shipp
M
,
Letai
A
.
BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents
.
Cancer Cell
.
2007
;
12
(
2
):
171
-
185
.
10.
Ni Chonghaile
T
,
Sarosiek
KA
,
Vo
TT
, et al
.
Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy
.
Science
.
2011
;
334
(
6059
):
1129
-
1133
.
11.
Montero
J
,
Sarosiek
KA
,
DeAngelo
JD
, et al
.
Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy
.
Cell
.
2015
;
160
(
5
):
977
-
989
.
12.
Pan
R
,
Hogdal
LJ
,
Benito
JM
, et al
.
Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia
.
Cancer Discov
.
2014
;
4
(
3
):
362
-
375
.
13.
Ward
PS
,
Thompson
CB
.
Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate
.
Cancer Cell
.
2012
;
21
(
3
):
297
-
308
.
14.
Bajpai
R
,
Sharma
A
,
Achreja
A
, et al
.
Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma
.
Nat Commun
.
2020
;
11
(
1
):
1228
.
15.
Sharma
A
,
Nair
R
,
Achreja
A
, et al
.
Therapeutic implications of mitochondrial stress-induced proteasome inhibitor resistance in multiple myeloma
.
Sci Adv
.
2022
;
8
(
39
):
eabq5575
.
16.
Bajpai
R
,
Matulis
SM
,
Wei
C
, et al
.
Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax
.
Oncogene
.
2016
;
35
(
30
):
3955
-
3964
.
17.
Swenson
SA
,
Moore
CM
,
Marcero
JR
,
Medlock
AE
,
Reddi
AR
,
Khalimonchuk
O
.
From synthesis to utilization: the ins and outs of mitochondrial heme
.
Cells
.
2020
;
9
(
3
):
579
.
18.
Möbius
K
,
Arias-Cartin
R
,
Breckau
D
, et al
.
Heme biosynthesis is coupled to electron transport chains for energy generation
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
23
):
10436
-
10441
.
19.
Shetty
T
,
Sishtla
K
,
Park
B
,
Repass
MJ
,
Corson
TW
.
Heme synthesis inhibition blocks angiogenesis via mitochondrial dysfunction
.
iScience
.
2020
;
23
(
8
):
101391
.
20.
Layer
G
,
Reichelt
J
,
Jahn
D
,
Heinz
DW
.
Structure and function of enzymes in heme biosynthesis
.
Protein Sci
.
2010
;
19
(
6
):
1137
-
1161
.
21.
Price
MJ
,
Scharer
CD
,
Kania
AK
,
Randall
TD
,
Boss
JM
.
Conserved epigenetic programming and enhanced heme metabolism drive memory B cell reactivation
.
J Immunol
.
2021
;
206
(
7
):
1493
-
1504
.
22.
Kim
H
,
Moore
CM
,
Mestre-Fos
S
, et al
.
Depletion assisted hemin affinity (DAsHA) proteomics reveals an expanded landscape of heme-binding proteins in the human proteome
.
Metallomics
.
2023
;
15
(
3
):
mfad004
.
23.
Hanna
DA
,
Moore
CM
,
Liu
L
, et al
.
Heme oxygenase-2 (HO-2) binds and buffers labile ferric heme in human embryonic kidney cells
.
J Biol Chem
.
2022
;
298
(
2
):
101549
.
24.
Valdes
PA
,
Bekelis
K
,
Harris
BT
, et al
.
5-Aminolevulinic acid-induced protoporphyrin IX fluorescence in meningioma: qualitative and quantitative measurements in vivo
.
Neurosurgery
.
2014
;
10
(
suppl 1
):
74
-
83
. discussion 82-73.
25.
Liu
KH
,
Nellis
M
,
Uppal
K
, et al
.
Reference standardization for quantification and harmonization of large-scale metabolomics
.
Anal Chem
.
2020
;
92
(
13
):
8836
-
8844
.
26.
Liu
KH
,
Owens
JA
,
Saeedi
B
, et al
.
Microbial metabolite delta-valerobetaine is a diet-dependent obesogen
.
Nat Metab
.
2021
;
3
(
12
):
1694
-
1705
.
27.
Olesinski
EA
,
Bhatia
KS
,
Wang
C
, et al
.
Acquired multidrug resistance in AML is caused by low apoptotic priming in relapsed myeloblasts
.
Blood Cancer Discov
.
2024
;
5
(
3
):
180
-
201
.
28.
Zhan
F
,
Huang
Y
,
Colla
S
, et al
.
The molecular classification of multiple myeloma
.
Blood
.
2006
;
108
(
6
):
2020
-
2028
.
29.
Gupta
VA
,
Matulis
SM
,
Conage-Pough
JE
, et al
.
Bone marrow microenvironment-derived signals induce Mcl-1 dependence in multiple myeloma
.
Blood
.
2017
;
129
(
14
):
1969
-
1979
.
30.
Vinchi
F
,
Costa da Silva
M
,
Ingoglia
G
, et al
.
Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease
.
Blood
.
2016
;
127
(
4
):
473
-
486
.
31.
McCubrey
JA
,
Steelman
LS
,
Chappell
WH
, et al
.
Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance
.
Biochim Biophys Acta
.
2007
;
1773
(
8
):
1263
-
1284
.
32.
Elbirt
KK
,
Bonkovsky
HL
.
Heme oxygenase: recent advances in understanding its regulation and role
.
Proc Assoc Am Physicians
.
1999
;
111
(
5
):
438
-
447
.
33.
Jain
A
,
Lamark
T
,
Sjøttem
E
, et al
.
p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
.
J Biol Chem
.
2010
;
285
(
29
):
22576
-
22591
.
34.
Watanabe-Matsui
M
,
Muto
A
,
Matsui
T
, et al
.
Heme regulates B-cell differentiation, antibody class switch, and heme oxygenase-1 expression in B cells as a ligand of Bach2
.
Blood
.
2011
;
117
(
20
):
5438
-
5448
.
35.
Sharma
R
,
Smolkin
RM
,
Chowdhury
P
, et al
.
Distinct metabolic requirements regulate B cell activation and germinal center responses
.
Nat Immunol
.
2023
;
24
(
8
):
1358
-
1369
.
36.
Nair
R
,
Gupta
P
,
Shanmugam
M
.
Mitochondrial metabolic determinants of multiple myeloma growth, survival, and therapy efficacy
.
Front Oncol
.
2022
;
12
:
1000106
.
37.
Sohoni
S
,
Ghosh
P
,
Wang
T
, et al
.
Elevated heme synthesis and uptake underpin intensified oxidative metabolism and tumorigenic functions in non–small cell lung cancer cells
.
Cancer Res
.
2019
;
79
(
10
):
2511
-
2525
.
38.
Stummer
W
,
Pichlmeier
U
,
Meinel
T
, et al
.
Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial
.
Lancet Oncol
.
2006
;
7
(
5
):
392
-
401
.
39.
Nokes
B
,
Apel
M
,
Jones
C
,
Brown
G
,
Lang
JE
.
Aminolevulinic acid (ALA): photodynamic detection and potential therapeutic applications
.
J Surg Res
.
2013
;
181
(
2
):
262
-
271
.
40.
Moesta
KT
,
Ebert
B
,
Handke
T
, et al
.
Protoporphyrin IX occurs naturally in colorectal cancers and their metastases
.
Cancer Res
.
2001
;
61
(
3
):
991
-
999
.
41.
Lin
KH
,
Xie
A
,
Rutter
JC
, et al
.
Systematic dissection of the metabolic-apoptotic interface in AML reveals heme biosynthesis to be a regulator of drug sensitivity
.
Cell Metab
.
2019
;
29
(
5
):
1217
-
1231.e7e1217
.
42.
Kumar
S
,
Bandyopadhyay
U
.
Free heme toxicity and its detoxification systems in human
.
Toxicol Lett
.
2005
;
157
(
3
):
175
-
188
.
43.
Pethő
D
,
Hendrik
Z
,
Nagy
A
, et al
.
Heme cytotoxicity is the consequence of endoplasmic reticulum stress in atherosclerotic plaque progression
.
Sci Rep
.
2021
;
11
(
1
):
10435
.
44.
Hopp
MT
,
Schmalohr
BF
,
Kühl
T
,
Detzel
MS
,
Wißbrock
A
,
Imhof
D
.
Heme determination and quantification methods and their suitability for practical applications and everyday use
.
Anal Chem
.
2020
;
92
(
14
):
9429
-
9440
.
45.
Akter
Z
,
Salamat
N
,
Ali
MY
,
Zhang
L
.
The promise of targeting heme and mitochondrial respiration in normalizing tumor microenvironment and potentiating immunotherapy
.
Front Oncol
.
2022
;
12
:
1072739
.
46.
Adapa
SR
,
Hunter
GA
,
Amin
NE
, et al
.
Porphyrin overdrive rewires cancer cell metabolism
.
Life Sci Alliance
.
2024
;
7
(
7
):
e202302547
.
47.
Hooda
J
,
Shah
A
,
Zhang
L
.
Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes
.
Nutrients
.
2014
;
6
(
3
):
1080
-
1102
.
48.
Timmer
TC
,
de Groot
R
,
Rijnhart
JJM
, et al
.
Dietary intake of heme iron is associated with ferritin and hemoglobin levels in Dutch blood donors: results from Donor InSight
.
Haematologica
.
2020
;
105
(
10
):
2400
-
2406
.
49.
Guo
W
,
Zhan
Y
,
Mery
D
, et al
.
Prognostic value of ferritin in ASCT MM patients: integration with GEP models and ISS series systems
.
Blood Cancer J
.
2024
;
14
(
1
):
30
.
50.
Wang
T
,
Ashrafi
A
,
Konduri
PC
, et al
.
Heme sequestration as an effective strategy for the suppression of tumor growth and progression
.
Mol Cancer Ther
.
2021
;
20
(
12
):
2506
-
2518
.
51.
Canesin
G
,
Di Ruscio
A
,
Li
M
, et al
.
Scavenging of labile heme by hemopexin is a key checkpoint in cancer growth and metastases
.
Cell Rep
.
2020
;
32
(
12
):
108181
.
52.
Biemond
BJ
,
Shore
B
,
Wilson
F
, et al
.
5610845 A phase 1 study of CSL888 (hemopexin) in adult patients with sickle cell disease
.
HemaSphere
.
2023
;
7
(
S1
):
15
.
53.
Fiorito
V
,
Chiabrando
D
,
Petrillo
S
,
Bertino
F
,
Tolosano
E
.
The multifaceted role of heme in cancer
.
Front Oncol
.
2019
;
9
:
1540
.
54.
Martínez-Reyes
I
,
Chandel
NS
.
Cancer metabolism: looking forward
.
Nat Rev Cancer
.
2021
;
21
(
10
):
669
-
680
.
55.
Zhu
XG
,
Chudnovskiy
A
,
Baudrier
L
, et al
.
Functional genomics in vivo reveal metabolic dependencies of pancreatic cancer cells
.
Cell Metab
.
2021
;
33
(
1
):
211
-
221.e6
.
56.
Biancur
DE
,
Kapner
KS
,
Yamamoto
K
, et al
.
Functional genomics identifies metabolic vulnerabilities in pancreatic cancer
.
Cell Metab
.
2021
;
33
(
1
):
199
-
210.e8
.
57.
Fukuda
Y
,
Wang
Y
,
Lian
S
, et al
.
Upregulated heme biosynthesis, an exploitable vulnerability in MYCN-driven leukemogenesis
.
JCI Insight
.
2017
;
2
(
15
):
e92409
.
58.
Allocco
AL
,
Bertino
F
,
Petrillo
S
, et al
.
Inhibition of heme export and/or heme synthesis potentiates metformin anti-proliferative effect on cancer cell lines
.
Cancers
.
2022
;
14
(
5
):
1230
.
59.
Ali
ES
,
Sahu
U
,
Villa
E
, et al
.
ERK2 phosphorylates PFAS to mediate posttranslational control of de novo purine synthesis
.
Mol Cell
.
2020
;
78
(
6
):
1178
-
1191.e6
.
60.
Mullen
NJ
,
Singh
PK
.
Nucleotide metabolism: a pan-cancer metabolic dependency
.
Nat Rev Cancer
.
2023
;
23
(
5
):
275
-
294
.
61.
Wu
Z
,
Bezwada
D
,
Cai
F
, et al
.
Electron transport chain inhibition increases cellular dependence on purine transport and salvage
.
Cell Metab
.
2024
;
36
(
7
):
1504
-
1520
.
62.
Hurrish
KH
,
Su
Y
,
Patel
S
, et al
.
Enhancing anti-AML activity of venetoclax by isoflavone ME-344 through suppression of OXPHOS and/or purine biosynthesis in vitro
.
Biochem Pharmacol
.
2024
;
220
:
115981
.
63.
Wong
KY
,
Yao
Q
,
Yuan
LQ
,
Li
Z
,
Ma
ESK
,
Chim
CS
.
Frequent functional activation of RAS signalling not explained by RAS/RAF mutations in relapsed/refractory multiple myeloma
.
Sci Rep
.
2018
;
8
(
1
):
13522
.
64.
Yang
H
,
Cooley
D
,
Legakis
JE
,
Ge
Q
,
Andrade
R
,
Mattingly
RR
.
Phosphorylation of the Ras-GRF1 exchange factor at Ser916/898 reveals activation of Ras signaling in the cerebral cortex
.
J Biol Chem
.
2003
;
278
(
15
):
13278
-
13285
.
65.
Zhang
Q
,
Riley-Gillis
B
,
Han
L
, et al
.
Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia
.
Signal Transduct Target Ther
.
2022
;
7
(
1
):
51
.
You do not currently have access to this content.
Sign in via your Institution