• Autologous transplantation allows clonal hematopoiesis to escape mutagenic chemotherapy and be reinfused to expand to neoplasm.

  • Distinct chemotherapies can promote the selection and acquisition of genomic drivers in therapy-related myeloid neoplasms.

Patients treated with cytotoxic therapies, including autologous stem cell transplantation, are at risk for developing therapy-related myeloid neoplasms (tMN). Preleukemic clones (ie, clonal hematopoiesis [CH]) are detectable years before the development of these aggressive malignancies, although the genomic events leading to transformation and expansion are not well defined. Here, by leveraging distinctive chemotherapy-associated mutational signatures from whole-genome sequencing data and targeted sequencing of prechemotherapy samples, we reconstructed the evolutionary life-history of 39 therapy-related myeloid malignancies. A dichotomy was revealed, in which neoplasms with evidence of chemotherapy-induced mutagenesis from platinum and melphalan were hypermutated and enriched for complex structural variants (ie, chromothripsis), whereas neoplasms with nonmutagenic chemotherapy exposures were genomically similar to de novo acute myeloid leukemia. Using chemotherapy-associated mutational signatures as temporal barcodes linked to discrete clinical exposure in each patient’s life, we estimated that several complex events and genomic drivers were acquired after chemotherapy was administered. For patients with prior multiple myeloma who were treated with high-dose melphalan and autologous stem cell transplantation, we demonstrate that tMN can develop from either a reinfused CH clone that escapes melphalan exposure and is selected after reinfusion, or from TP53-mutant CH that survives direct myeloablative conditioning and acquires melphalan-induced DNA damage. Overall, we revealed a novel mode of tMN progression that is not reliant on direct mutagenesis or even exposure to chemotherapy. Conversely, for tMN that evolve under the influence of chemotherapy-induced mutagenesis, distinct chemotherapies not only select preexisting CH but also promote the acquisition of recurrent genomic drivers.

1.
Majhail
NS
,
Tao
L
,
Bredeson
C
, et al
.
Prevalence of hematopoietic cell transplant survivors in the United States
.
Biol Blood Marrow Transplant
.
2013
;
19
(
10
):
1498
-
1501
.
2.
McNerney
ME
,
Godley
LA
,
Le Beau
MM
.
Therapy-related myeloid neoplasms: when genetics and environment collide
.
Nat Rev Cancer
.
2017
;
17
(
9
):
513
-
527
.
3.
Kayser
S
,
Doehner
K
,
Krauter
J
, et al
.
The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML
.
Blood
.
2011
;
117
(
7
):
2137
-
2145
.
4.
Gibson
CJ
,
Lindsley
RC
,
Tchekmedyian
V
, et al
.
Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma
.
J Clin Oncol
.
2017
;
35
(
14
):
1598
-
1605
.
5.
Desai
P
,
Mencia-Trinchant
N
,
Savenkov
O
, et al
.
Somatic mutations precede acute myeloid leukemia years before diagnosis
.
Nat Med
.
2018
;
24
(
7
):
1015
-
1023
.
6.
Genovese
G
,
Kähler
AK
,
Handsaker
RE
, et al
.
Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
.
N Engl J Med
.
2014
;
371
(
26
):
2477
-
2487
.
7.
Mouhieddine
TH
,
Sperling
AS
,
Redd
R
, et al
.
Clonal hematopoiesis is associated with adverse outcomes in multiple myeloma patients undergoing transplant
.
Nat Commun
.
2020
;
11
(
1
):
1
-
9
.
8.
Rosenbloom
B
,
Schreck
R
,
Koeffler
HP
.
Therapy-related myelodysplastic syndromes
.
Hematol Oncol Clin N Am
.
1992
;
6
(
3
):
707
-
722
.
9.
Godley
LA
,
Larson
RA
.
Therapy-related myeloid leukemia
.
Semin Oncol
.
2008
;
35
(
4
):
418
-
429
.
10.
Coombs
CC
,
Zehir
A
,
Devlin
SM
, et al
.
Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes
.
Cell Stem Cell
.
2017
;
21
(
3
):
374
-
382.e374
.
11.
Bolton
KL
,
Ptashkin
RN
,
Gao
T
, et al
.
Cancer therapy shapes the fitness landscape of clonal hematopoiesis
.
Nat Genet
.
2020
;
52
(
11
):
1219
-
1226
.
12.
Wong
TN
,
Ramsingh
G
,
Young
AL
, et al
.
Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia
.
Nature
.
2015
;
518
(
7540
):
552
-
555
.
13.
Lee-Six
H
,
Olafsson
S
,
Ellis
P
, et al
.
The landscape of somatic mutation in normal colorectal epithelial cells
.
Nature
.
2019
;
574
(
7779
):
532
-
537
.
14.
Pich
O
,
Muiños
F
,
Lolkema
MP
,
Steeghs
N
,
Gonzalez-Perez
A
,
Lopez-Bigas
N
.
The mutational footprints of cancer therapies
.
Nat Genet
.
2019
;
51
(
12
):
1732
-
1740
.
15.
Jain
MD
,
Ziccheddu
B
,
Coughlin
CA
, et al
.
Whole-genome sequencing reveals complex genomic features underlying anti-CD19 CAR T-cell treatment failures in lymphoma
.
Blood
.
2022
;
140
(
5
):
491
-
503
.
16.
Kaplanis
J
,
Ide
B
,
Sanghvi
R
, et al
.
Genetic and chemotherapeutic influences on germline hypermutation
.
Nature
.
2022
;
605
(
7910
):
503
-
508
.
17.
Kucab
JE
,
Zou
X
,
Morganella
S
, et al
.
A compendium of mutational signatures of environmental agents
.
Cell
.
2019
;
177
(
4
):
821
-
836.e816
.
18.
Landau
HJ
,
Yellapantula
V
,
Diamond
BT
, et al
.
Accelerated single cell seeding in relapsed multiple myeloma
.
Nat Commun
.
2020
;
11
(
1
):
1
-
10
.
19.
Moore
L
,
Cagan
A
,
Coorens
TH
, et al
.
The mutational landscape of human somatic and germline cells
.
Nature
.
2021
;
597
(
7876
):
381
-
386
.
20.
Alexandrov
LB
,
Jones
PH
,
Wedge
DC
, et al
.
Clock-like mutational processes in human somatic cells
.
Nat Genet
.
2015
;
47
(
12
):
1402
-
1407
.
21.
Alexandrov
LB
,
Kim
J
,
Haradhvala
NJ
, et al
.
The repertoire of mutational signatures in human cancer
.
Nature
.
2020
;
578
(
7793
):
94
-
101
.
22.
Alexandrov
LB
,
Nik-Zainal
S
,
Wedge
DC
, et al
.
Signatures of mutational processes in human cancer
.
Nature
.
2013
;
500
(
7463
):
415
-
421
.
23.
Nik-Zainal
S
,
Davies
H
,
Staaf
J
, et al
.
Landscape of somatic mutations in 560 breast cancer whole-genome sequences
.
Nature
.
2016
;
534
(
7605
):
47
-
54
.
24.
Nik-Zainal
S
,
Van Loo
P
,
Wedge
DC
, et al
.
The life history of 21 breast cancers
.
Cell
.
2012
;
149
(
5
):
994
-
1007
.
25.
Pich
O
,
Cortes-Bullich
A
,
Muiños
F
,
Pratcorona
M
,
Gonzalez-Perez
A
,
Lopez-Bigas
N
.
The evolution of hematopoietic cells under cancer therapy
.
Nat Commun
.
2021
;
12
(
1
):
1
-
11
.
26.
Link
D
,
Walter
M
.
‘CHIP’ping away at clonal hematopoiesis
.
Leukemia
.
2016
;
30
(
8
):
1633
-
1635
.
27.
Stoddart
A
,
Wang
J
,
Fernald
AA
, et al
.
Cytotoxic therapy–induced effects on both hematopoietic and marrow stromal cells promotes therapy-related myeloid neoplasms
.
Blood Cancer Discov
.
2020
;
1
(
1
):
32
-
47
.
28.
Zambetti
NA
,
Ping
Z
,
Chen
S
, et al
.
Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia
.
Cell Stem Cell
.
2016
;
19
(
5
):
613
-
627
.
29.
Rustad
EH
,
Yellapantula
V
,
Leongamornlert
D
, et al
.
Timing the initiation of multiple myeloma
.
Nat Commun
.
2020
;
11
(
1
):
1
-
14
.
30.
Maura
F
,
Weinhold
N
,
Diamond
B
, et al
.
The mutagenic impact of melphalan in multiple myeloma
.
Leukemia
.
2021
;
35
(
8
):
2145
-
2150
.
31.
Rasche
L
,
Schinke
C
,
Maura
F
, et al
.
The spatio-temporal evolution of multiple myeloma from baseline to relapse-refractory states
.
Nat Commun
.
2022
;
13
(
1
):
4517
.
32.
Maura
F
,
Degasperi
A
,
Nadeu
F
, et al
.
A practical guide for mutational signature analysis in hematological malignancies
.
Nat Commun
.
2019
;
10
(
1
):
1
-
12
.
33.
Network
CGAR
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med
.
2013
;
368
(
22
):
2059
-
2074
.
34.
Degasperi
A
,
Amarante
TD
,
Czarnecki
J
, et al
.
A practical framework and online tool for mutational signature analyses show intertissue variation and driver dependencies
.
Nat Cancer
.
2020
;
1
(
2
):
249
-
263
.
35.
Degasperi
A
,
Zou
X
,
Dias Amarante
T
, et al
.
Substitution mutational signatures in whole-genome–sequenced cancers in the UK population
.
Science
.
2022
;
376
(
6591
):
abl9283
.
36.
de Kanter
JK
,
Peci
F
,
Bertrums
E
, et al
.
Antiviral treatment causes a unique mutational signature in cancers of transplantation recipients
.
Cell Stem Cell
.
2021
;
28
(
10
):
1726
-
1739.e1726
.
37.
Giesen
N
,
Paramasivam
N
,
Toprak
UH
, et al
.
Comprehensive genomic analysis of refractory multiple myeloma reveals a complex mutational landscape associated with drug resistance and novel therapeutic vulnerabilities
.
Haematologica
.
2022
;
107
(
8
):
1891
-
1901
.
38.
Gouyette
A
,
Hartmann
O
,
Pico
J-L
.
Pharmacokinetics of high-dose melphalan in children and adults
.
Cancer Chemother Pharmacol
.
1986
;
16
(
2
):
184
-
189
.
39.
Feusier
JE
,
Arunachalam
S
,
Tashi
T
, et al
.
Large-scale identification of clonal hematopoiesis and mutations recurrent in blood cancers
.
Blood Cancer Discov
.
2021
;
2
(
3
):
226
-
237
.
40.
Tyner
JW
,
Tognon
CE
,
Bottomly
D
, et al
.
Functional genomic landscape of acute myeloid leukaemia
.
Nature
.
2018
;
562
(
7728
):
526
-
531
.
41.
Pich
O
,
Reyes-Salazar
I
,
Gonzalez-Perez
A
,
Lopez-Bigas
N
.
Discovering the drivers of clonal hematopoiesis
.
Nat Commun
.
2022
;
13
(
1
):
1
-
12
.
42.
Cheng
DT
,
Mitchell
TN
,
Zehir
A
, et al
.
Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology
.
J Mol Diagn
.
2015
;
17
(
3
):
251
-
264
.
43.
Fabre
MA
,
de Almeida
JG
,
Fiorillo
E
, et al
.
The longitudinal dynamics and natural history of clonal haematopoiesis
.
Nature
.
2022
;
606
(
7913
):
335
-
342
.
44.
Robertson
NA
,
Latorre-Crespo
E
,
Terradas-Terradas
M
, et al
.
Longitudinal dynamics of clonal hematopoiesis identifies gene-specific fitness effects
.
Nat Med
.
2022
;
28
(
7
):
1439
-
1446
.
45.
Abelson
S
,
Collord
G
,
Ng
SW
, et al
.
Prediction of acute myeloid leukaemia risk in healthy individuals
.
Nature
.
2018
;
559
(
7714
):
400
-
404
.
46.
Haferlach
C
,
Dicker
F
,
Herholz
H
,
Schnittger
S
,
Kern
W
,
Haferlach
T
.
Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype
.
Leukemia
.
2008
;
22
(
8
):
1539
-
1541
.
47.
Qian
Z
,
Joslin
JM
,
Tennant
TR
, et al
.
Cytogenetic and genetic pathways in therapy-related acute myeloid leukemia
.
Chem Biol Interact
.
2010
;
184
(
1-2
):
50
-
57
.
48.
Cortés-Ciriano
I
,
Lee
JJ-K
,
Xi
R
, et al
.
Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing
.
Nat Genet
.
2020
;
52
(
3
):
331
-
341
.
49.
Rustad
EH
,
Yellapantula
VD
,
Glodzik
D
, et al
.
Revealing the impact of structural variants in multiple myeloma
.
Blood Cancer Discov
.
2020
;
1
(
3
):
258
-
273
.
50.
Li
Y
,
Roberts
ND
,
Wala
JA
, et al
.
Patterns of somatic structural variation in human cancer genomes
.
Nature
.
2020
;
578
(
7793
):
112
-
121
.
51.
Hadi
K
,
Yao
X
,
Behr
JM
, et al
.
Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs
.
Cell
.
2020
;
183
(
1
):
197
-
210.e132
.
52.
Jelinic
P
,
Mueller
JJ
,
Olvera
N
, et al
.
Recurrent SMARCA4 mutations in small cell carcinoma of the ovary
.
Nat Genet
.
2014
;
46
(
5
):
424
-
426
.
53.
Love
C
,
Sun
Z
,
Jima
D
, et al
.
The genetic landscape of mutations in Burkitt lymphoma
.
Nat Genet
.
2012
;
44
(
12
):
1321
-
1325
.
54.
Zhang
J
,
Jima
D
,
Moffitt
AB
, et al
.
The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells
.
Blood
.
2014
;
123
(
19
):
2988
-
2996
.
55.
Schwartz
JR
,
Ma
J
,
Kamens
J
, et al
.
The acquisition of molecular drivers in pediatric therapy-related myeloid neoplasms
.
Nat Commun
.
2021
;
12
(
1
):
1
-
11
.
56.
Bertrums
EJ
,
Huber
AKR
,
de Kanter
JK
, et al
.
Elevated mutational age in blood of children treated for cancer contributes to therapy-related myeloid neoplasms
.
Cancer Discov
.
2022
;
12
(
8
):
1860
-
1872
.
57.
Voit
RA
,
Tao
L
,
Yu
F
, et al
.
A genetic disorder reveals a hematopoietic stem cell regulatory network co-opted in leukemia
.
Nat Immunol
.
2023
;
24
(
1
):
69
-
83
.
58.
Gerstung
M
,
Jolly
C
,
Leshchiner
I
, et al
.
The evolutionary history of 2,658 cancers
.
Nature
.
2020
;
578
(
7793
):
122
-
128
.
59.
Fittall
MW
,
Van Loo
P
.
Translating insights into tumor evolution to clinical practice: promises and challenges
.
Genome Med
.
2019
;
11
(
1
):
1
-
14
.
60.
Maura
F
,
Bolli
N
,
Angelopoulos
N
, et al
.
Genomic landscape and chronological reconstruction of driver events in multiple myeloma
.
Nat Commun
.
2019
;
10
(
1
):
1
-
12
.
61.
Maura
F
,
Ziccheddu
B
,
Xiang
JZ
, et al
.
Molecular evolution of classic Hodgkin lymphoma revealed through whole genome sequencing of Hodgkin and Reed Sternberg cells. Blood Cancer Discov
. Published online 1 February 2023. https://doi.org/10.1158/2643-3230.BCD-22-0128.
62.
Shoshani
O
,
Brunner
SF
,
Yaeger
R
, et al
.
Chromothripsis drives the evolution of gene amplification in cancer
.
Nature
.
2021
;
591
(
7848
):
137
-
141
.
63.
Mitchell
TJ
,
Turajlic
S
,
Rowan
A
, et al
.
Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal
.
Cell
.
2018
;
173
(
3
):
611
-
623.e617
.
64.
Sperling
AS
,
Guerra
VA
,
Kennedy
JA
, et al
.
Lenalidomide promotes the development of TP53-mutated therapy-related myeloid neoplasms
.
Blood
.
2022
;
140
(
16
):
1753
-
1763
.
65.
Hsu
JI
,
Dayaram
T
,
Tovy
A
, et al
.
PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy
.
Cell Stem Cell
.
2018
;
23
(
5
):
700
-
713.e706
.
66.
Parmar
H
,
Gertz
M
,
Anderson
EI
,
Kumar
S
,
Kourelis
TV
.
Microenvironment immune reconstitution patterns correlate with outcomes after autologous transplant in multiple myeloma
.
Blood Adv
.
2021
;
5
(
7
):
1797
-
1804
.
67.
Dijkgraaf
EM
,
Heusinkveld
M
,
Tummers
B
, et al
.
Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment
.
Cancer Res
.
2013
;
73
(
8
):
2480
-
2492
.
68.
Biasco
L
,
Pellin
D
,
Scala
S
, et al
.
In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady-state reconstitution phases
.
Cell Stem Cell
.
2016
;
19
(
1
):
107
-
119
.
69.
Sun
J
,
Ramos
A
,
Chapman
B
, et al
.
Clonal dynamics of native haematopoiesis
.
Nature
.
2014
;
514
(
7522
):
322
-
327
.
70.
Fuster
JJ
,
MacLauchlan
S
,
Zuriaga
MA
, et al
.
Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice
.
Science
.
2017
;
355
(
6327
):
842
-
847
.
71.
Jaiswal
S
,
Fontanillas
P
,
Flannick
J
, et al
.
Age-related clonal hematopoiesis associated with adverse outcomes
.
N Engl J Med
.
2014
;
371
(
26
):
2488
-
2498
.
You do not currently have access to this content.
Sign in via your Institution