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Tracking the evolution of therapy-related myeloid
neoplasms using chemotherapy signatures
D
ow

nloaded from
 http://ashpublications
Benjamin Diamond,1,* Bachisio Ziccheddu,1,* Kylee Maclachlan,2 Justin Taylor,1 Eileen Boyle,3 Juan Arango Ossa,4 Jacob Jahn,1

Maurizio Affer,1 Tulasigeri M. Totiger,1 David Coffey,1 Namrata Chandhok,1 Justin Watts,1 Luisa Cimmino,1 Sydney X. Lu,5 Niccolò Bolli,6,7
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KEY PO INT S

•Autologous
transplantation allows
clonal hematopoiesis to
escape mutagenic
chemotherapy and be
reinfused to expand to
neoplasm.

•Distinct
chemotherapies can
promote the selection
and acquisition of
genomic drivers in
therapy-related
myeloid neoplasms.
i

Patients treated with cytotoxic therapies, including autologous stem cell transplantation,
are at risk for developing therapy-related myeloid neoplasms (tMN). Preleukemic clones
(ie, clonal hematopoiesis [CH]) are detectable years before the development of these
aggressive malignancies, although the genomic events leading to transformation and
expansion are not well defined. Here, by leveraging distinctive chemotherapy-associated
mutational signatures from whole-genome sequencing data and targeted sequencing of
prechemotherapy samples, we reconstructed the evolutionary life-history of 39 therapy-
related myeloid malignancies. A dichotomy was revealed, in which neoplasms with
evidence of chemotherapy-induced mutagenesis from platinum and melphalan were
hypermutated and enriched for complex structural variants (ie, chromothripsis), whereas
neoplasms with nonmutagenic chemotherapy exposures were genomically similar to de
novo acute myeloid leukemia. Using chemotherapy-associated mutational signatures as
temporal barcodes linked to discrete clinical exposure in each patient’s life, we estimated
that several complex events and genomic drivers were acquired after chemotherapy was
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administered. For patients with prior multiple myeloma who were treated with high-dose melphalan and autologous
stem cell transplantation, we demonstrate that tMN can develop from either a reinfused CH clone that escapes
melphalan exposure and is selected after reinfusion, or from TP53-mutant CH that survives direct myeloablative
conditioning and acquires melphalan-induced DNA damage. Overall, we revealed a novel mode of tMN progression
that is not reliant on direct mutagenesis or even exposure to chemotherapy. Conversely, for tMN that evolve under
the influence of chemotherapy-induced mutagenesis, distinct chemotherapies not only select preexisting CH but also
promote the acquisition of recurrent genomic drivers.
Introduction
Therapy-related myeloid neoplasms (tMN) have dismal
prognoses and their incidence is predicted to increase as
cancer survival rates rise.1-3 Some patients with underlying
clonal hematopoiesis (CH) have a particularly high risk of
tMN, especially those undergoing autologous stem cell
transplantation (ASCT), a treatment with ubiquitous usage in
lymphoproliferative disorders including in multiple myeloma
(MM).4-10 There is evidence that anticancer therapies
exert positive selective pressure on CH bearing preleukemic
driver mutations (eg, TP53) such that expansion is not
contingent on increased mutational burden relative to de
novo acute myeloid leukemia (AML).11,12 Despite this,
distinct DNA-damaging cytotoxic agents can measurably
alter the mutational profile of each exposed cell, including
in normal tissue, across cell lines, and in multiple
malignancies.13-19
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Figure 1. Chemotherapy-induced mutagenesis and therapy-related myeloid neoplasm WGS cohort. (A) Cartoon summarizing that a single-cell expansion model is
required to measure chemotherapy-associated mutational signatures in bulk WGS data. Populations that have already expanded sufficiently will develop private
chemotherapy-induced mutations within multiple branching clones. With their expansion in the absence of single-cell expansion, subclonal mutations in each branch have
frequencies below the bulk WGS limits of detection. (B) Sankey plot showing the therapeutic relationship between primary diagnosis and tMN. The therapy node cumulatively
counts the patient’s exposure to each agent. (C) tMN for which WGS was performed with latency between the primary tumor and the second malignancy (left) and specific
chemotherapy exposure (right). Forty tMN from 39 patients visually separated by the primary malignancy diagnosis are included. The line of therapy (ie, the order of treatment)
is plotted on the x-axis. The backslashes separate sequential samples from the same patient. Anti-M, antimetabolite.
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Mutational processes can be identified by examining mutations
within specific nucleotide contexts. Distinct mutational signa-
tures have been extracted and linked to intrinsic and extrinsic
processes.20-24 The deconvolution of mutational signatures
from whole-genome sequencing (WGS) data has allowed for
direct quantitation of chemotherapy-mediated DNA damage
and has revealed that a subset of tMN with prior platinum
exposure does indeed have an increased chemotherapy-
specific mutational burden compared with non–platinum-
exposed tMN.25 However, it is largely unknown how chemo-
therapy exposure promotes CH progression to tMN. In
addition to preferential selection of relatively fit CH clones
among an altered and immunosuppressive bone marrow
2360 11 MAY 2023 | VOLUME 141, NUMBER 19
microenvironment,26-28 chemotherapy exposure may promote
the acquisition of new driver events.

Chemotherapy-related mutational signatures are only detect-
able in bulk WGS after the clonal expansion of a single
cell bearing a unique catalog of chemotherapy-induced muta-
tions (ie, the single-cell expansion model, Figure 1A). The
resultant mutational signature thus serves as a genomic single-
cell barcode, linked to discrete clinical and temporal
exposure.14,16-18,29-31 This effect is particularly significant in
cells exposed to platinum and melphalan, 2 chemotherapeutics
with distinct mutational signatures and highly penetrant muta-
genic activity.14,18,29,31 Here, we leverage WGS and
DIAMOND et al
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chemotherapy-induced mutational signatures as temporal
molecular barcodes to measure the genomic evolution of tMN
with reference to each patient’s known therapeutic history. We
focused on the investigation of neoplasms that emerged after
high-dose melphalan with ASCT (eg, MM) because chemo-
therapy is administered in a single bolus, is associated with a
distinct mutational signature (SBS-MM1),29 and because the
leukapheresis procedure potentially allows preleukemic clones
to evade exposure to chemotherapy (supplemental Figure 1A;
available on the Blood website). Overall, our data revealed
2 modes of expansion for tMN: one in which direct exposure to
chemotherapy selects a preexisting CH clone and facilitates the
post-therapy acquisition of distinct genomic drivers, and the
other depends neither on direct chemotherapy-induced muta-
genesis nor direct exposure to cytotoxic agents.
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Methods
Study cohort
The WGS cohort was compiled using both the newly
sequenced and publicly available data (supplemental Table 1).
Clinical records at the Memorial Sloan Kettering Cancer Center
(MSKCC) were screened to identify adult patients who devel-
oped tMN after exposure to either high-dose melphalan- or
platinum-containing antineoplastic regimens. Eighteen tMN
were eligible for sequencing (supplemental Tables 1-2). Eight
patients were treated with melphalan as their sole cytotoxic
therapy. The remaining 22 tMN genomes (from 21 patients)
were imported from public datasets.12,32 21 de novo AML
whole genomes were imported from TCGA33 (dbGaP:
phs000178) as comparators. A total of 298 de novo AML and 22
tMN whole exomes (WES) were imported from the Beat AML
data set (dbGaP: phs001657). To further gauge the effects of
mutagenic chemotherapy on the genomic evolution of sec-
ondary malignancies after exposure to melphalan, we identified
and sequenced 5 patients with B-ALL and 1 with transitional cell
carcinoma diagnosed post-melphalan/ASCT for prior myeloma.
In total, 20 patients with primary MM were included in the
study, 19/20 of which received melphalan/ASCT. Two patients
diagnosed with MM after exposure to platinum for ovarian and
colorectal cancers were also included in the WGS
(supplemental methods; supplemental Table 2). Samples and
data were obtained and managed in accordance with the
Declaration of Helsinki and the Institutional Review Board of
MSKCC under protocols 14-276 and 15-017. A detailed
description of the sequencing and analytical methods is pro-
vided in the supplemental methods.
2024
Results
The mutational landscape of therapy-related
malignancies
To measure the direct mutagenic activity of different chemo-
therapies and their roles in promoting tMN, we assembled a
cohort of 40 tMN WGS from 39 patients with malignancies
secondary to cytotoxic therapy (and/or radiation). Sixteen (40%)
patients developed tMN post-melphalan/ASCT, 14 had MM,
and 2 had aggressive B-cell lymphomas (Figure 1B-C;
supplemental Tables 1-3; supplemental methods). Latency
between the diagnosis of primary malignancy and tMN varied
(median, 5.5 years; interquartile range [IQR], 2.4-7.2 years;
CHEMOTHERAPY SIGNATURES REVEAL EVOLUTION OF tMN
Figure 1C), and outcomes post tMN diagnosis were expectedly
poor (supplemental Figure 1B).

We first quantified the mutational processes that had been
active in each tumor in accordance with a previously published
workflow (Figure 2A; supplemental methods; supplemental
Figure 2; supplemental Tables 4-8).29,32,34,35 Five known
single-base substitution (SBS) mutational processes were iden-
tified in myeloid neoplasms: SBS1 and SBS-HSC, attributable to
clock-like mutations that accumulate with age, observed in all
hematopoietic cells25; SBS31 and SBS35, attributable to
mutations induced by intercalating platinum chemotherapies14;
and SBS-MM1, caused by the alkylator melphalan.18,29,30

Although SBS-MM1 has been reported in MM, lymphomas,
and normal tissues previously exposed to melphalan, this is the
first observation of melphalan mutagenesis in tMN. As
expected, de novo AMLs and their relapsed samples bore only
evidence of clock-like mutational processes, as neither of the
induction agents cytarabine or anthracyclines are linked to
distinct mutational signatures.17,21,36 The only antineoplastic
agents that induced measurable SBS mutagenesis were plat-
inum and melphalan, with the SBS burden in tMN having
exposure to these agents being significantly higher than in
either de novo AML (Wilcoxon test; P = .006) or unexposed
tMN (Wilcoxon test; P = .023; Figure 2B). Though 5-fluorouracil
is known to leave a distinct SBS signature (SBS17b), no evi-
dence of it was seen in the 1 exposed sample, possibly in line
with its mechanism of mutagenicity on dividing – and not
quiescent – cells.25 Conversely, adducts generated by
melphalan- and platinum-based agents are not dependent on
cell turnover,16,25 and from previous studies are known to be
highly penetrant in inducing mutagenesis in tumor and normal
tissues.13,16,18,19,29-31,37 The mutational burden between de
novo AML and tMN without melphalan or platinum exposure
were strikingly similar (Wilcoxon test; P = .492; Figure 2B),
confirming that some chemotherapies may facilitate malignancy
in absence of SBS mutagenesis.25

To further characterize the genomic impact of chemotherapy,
we extracted double-base substitution (DBS) and indel (ID)
signatures (supplemental methods; Figure 2A; supplemental
Figures 3-4; supplemental Tables 4-6 and 9-11). Two DBS sig-
natures known to be associated with platinum exposure14,25

were identified in 8 of 10 (80%) tMN with previous platinum
exposure compared with none in unexposed samples (Wilcoxon
test; P < .001; Figure 2C). Indels attributable to ID8, previously
linked to double strand breaks and ionizing radiation,17,21 were
enriched in tumors with chemotherapy-induced mutagenesis
(Figure 2D supplemental Figure 5A), independent of prior
radiotherapy, suggesting a link between ID8 and therapy-
mediated genotoxic damage in tMN.21
Escape from chemotherapy-induced mutagenesis
All tMN with prior platinum exposure (n = 10) had evidence of
platinum-associated SBS31 and/or SBS35 signatures, including
samples with a latency from primary exposure until secondary
malignancy of up to 25 years (IQR, 3.9-9.0; Figure 2A;
supplemental Tables 2, 8). This complete penetrance indicates
that an originating cell, with direct DNA damage from platinum
chemotherapy, expanded to clonal dominance (ie, single-cell
expansion model, Figure 1A; supplemental Figure 6A).14,18,29
11 MAY 2023 | VOLUME 141, NUMBER 19 2361
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Figure 2. Mutational impact of chemotherapy on the whole-genome of therapy-related tumor. (A) Proportional contribution of SBS, DBS, and ID mutational signatures in
each tumor sample. Each column represents a unique patient. Samples are annotated by disease histology and therapy exposure. Asterisk denotes the only patient exposed
to low-dose melphalan without transplantation. (B) Boxplots for the number of SBS for platinum/melphalan-exposed tMN compared with de novo AML and other tMN. (C)
Boxplot for E-DBS3 and E-DBS9 in platinum-exposed and -unexposed tMN. (D) Boxplot for ID8 in de novo AML, tMN with chemotherapy mutational signatures, and tMN
without chemotherapy mutational signatures. Dots with orange borders are from patients exposed to radiation.
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In striking contrast, only 7 of 17 (41%) tMN with prior melphalan
exposure had the SBS-MM1 melphalan signature, with neo-
plasms bearing SBS-MM1 containing a significantly higher
tumor mutational burden than those without the signature
2362 11 MAY 2023 | VOLUME 141, NUMBER 19
(Wilcoxon test; P < .001; supplemental Figure 5B). All but 1 of
these patients was exposed to high-dose myeloablative
melphalan as a conditioning for ASCT. The absence of SBS-
MM1 in these tMN can be explained by malignant
DIAMOND et al
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progression driven by a population that has already expanded
with multiple subclones in parallel (Figure 1A; supplemental
Figure 6B), by the absence of direct mutagenic activity, or by
a cell that has managed to escape exposure (supplemental
Figure 6C).

As seen in relapsed MM, cell lines, and diffuse large B-cell
lymphoma, melphalan has highly mutagenic and penetrant
activity and exposure is expected to lead to
mutagenesis.15,17,18,29-31,37 In fact, melphalan and platinum
signatures are often seen together in patients exposed to both
agents.18 Precursor escape via leukapheresis, as an explanation
for the absence of SBS-MM1, is therefore the most likely
explanation, and is supported by 4 lines of evidence. First,
although latency between exposure to melphalan and sample
collection is known to affect selection, single cell-expansion,
and penetrance of SBS-MM1 detectability in MM,18,31,37 the
latency between tMN and chemotherapy exposure in patients
with either platinum or melphalan exposure had no influence on
signature penetrance (Wilcoxon test; P = .329). Second, we
sequenced 5 patients with post-melphalan/ASCT B-ALL for
orthogonal support from an alternate disease biology and SBS-
MM1 was not present in any, supporting a similar expansion
model in an alternate secondary malignancy (Figure 2A). Third,
patients with sequential exposure to platinum and then
melphalan/ASCT [2 tMN (IID_H198324, IID_H198325) and 1 B-
ALL (IID_H198326)] had tumors bearing only platinum-related
mutational signatures, indicating that a single cell exposed to
A
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Figure 3. Relationship between chemotherapy and CH mutations. (A) Per gene contri
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Swimmer plot depicting the timing of CH assessment in relation to malignant diagnoses
from the diagnosis of the primary tumor to the diagnosis of therapy-related malignancy
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CHEMOTHERAPY SIGNATURES REVEAL EVOLUTION OF tMN
platinum, but not to melphalan, expanded to clonal dominance.
Given the short latency between the 2 therapies, the absence of
SBS-MM1 can only be explained by escape via leukapheresis
(supplemental Figure 6D). Finally, interrogation of the WGS of
tumors with precursors that did not have a possible route of
escape from melphalan did indeed have SBS-MM1 signatures:
1 patient with tMN after treatment with oral melphalan without
ASCT (IID_H201267), and a transitional cell carcinoma diag-
nosed after melphalan/ASCT (IID_H203564; supplemental
methods; Figure 2A; supplemental Figure 7). The latter tumor
was chosen for sequencing because unchanged melphalan is
partially excreted in urine,38 thus putting the urothelium in
direct contact with the mutagen. Although preleukemic clones
have been demonstrated in apheresis products,7 the clone
responsible for tMN progression has previously been unknown
because of the categorical presence of CH within the patient, as
well as in the apheresis product. Although we cannot exclude
that in some samples, SBS-MM1 was below the threshold of
detection (ie, absence of single-cell expansion) or that a pre-
cursor cell was somehow shielded from the exposure, these
data together suggest that leukapheresis can allow for a pre-
leukemic clone to escape exposure to melphalan and its related
mutagenic activity, and then be reinfused to expand into tMN.

The driver mutations landscape of therapy-related
myeloid neoplasms
Although SNV in driver mutations for tMN and de novo AML
have been extensively reported,33,39,40 it remains unclear
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whether exposure to chemotherapy solely selects for preexist-
ing CH or whether it may also introduce new driver mutations.
We first determined positively-selected driver genes using the
dN/dS algorithm for both de novo AML and tMN, importing
samples from the Beat AML data set of WES to increase power
(298 de novo AML and 22 tMN; supplemental methods;
CHEMOTHERAPY SIGNATURES REVEAL EVOLUTION OF tMN
supplemental Table 12).40 Only TP53 was more frequently
mutated in tMN (Fisher test; P < .001; false discovery rate [FDR]
= 0.009).9 Conversely, NPM1 was more frequently mutated in
de novo AML (P < .001; FDR = 0.019) in line with previous
findings.41 Although limited by sample size, there were no
significant differences in driver gene SNVs between chemo-
therapy signature-positive and -negative tMN and specifically
between melphalan-signature-positive and -negative cases
(supplemental Figure 8; supplemental Table 13). Next, we
sought to determine whether chemotherapy could introduce
mutations at the driver gene level. We combined our post-
platinum tMN WGS with a large number of CH mutations
from a cohort of patients treated previously with platinum
therapies from Bolton et al (749 mutations in 655 patients).11

Estimating the mutational signature contribution to all non-
synonymous mutations in prevalent driver genes, we observed
only a minor platinum contribution (supplemental methods;
Figure 3A), suggesting that the vast majority of mutations in
driver genes are likely selected and not caused by chemo-
therapy exposure.

To expand on the relationship between mutations in driver
genes and chemotherapy, we performed targeted sequencing
on premelphalan blood mononuclear cells, granulocytes, and
CD34+ apheresis samples from 11 of the newly sequenced
hematologic malignancies from patients treated with
melphalan/ASCT (supplemental methods).11,42 Knowing from
the tumor WGS, the full catalog of clonal mutations, we could
identify precursor mutations at lower variant allele frequencies
than could be confidently called with mutation-calling algo-
rithms, alone, in the prechemotherapy samples (supplemental
methods). Eight of the 11 cases (72%), including 3 of 4 leuka-
pheresis products, showed evidence of antecedent pre-
leukemic clones (Figure 3B; supplemental Table 14). Notably,
for IID_H198330, a case without the melphalan mutational
signature, an antecedent TP53-mutated CH was detected in the
apheresis product (supplemental Figure 9), supporting an
evolutionary trajectory of escape from exposure to chemo-
therapy, reinfusion with transplant, and expansion in the
absence of melphalan-induced mutagenesis. Acknowledging
that gene-level signature fitting is limited by this sample size, for
10 of 21 (47.6%) driver mutations in tMN WGS not captured at
prechemotherapy time points, none were in key platinum or
melphalan trinucleotide contexts, suggesting that there is a low
chance that they were introduced by chemotherapy
(supplemental Table 15). Variants at low frequencies emphasize
that CH clone size is not categorically predictive of progression
to myeloid neoplasms.5,11,43-45
Copy number and structural variation in therapy-
related myeloid neoplasms
We next compared recurrent copy number aberrations (CNAs)
between de novo AML and tMN, including the exomes from
Beat AML (supplemental methods). We differentially detected 7
arm-level and 1 focal region (19p13.2) of amplification, and 7
arm-level and 11 focal regions of copy number loss (FDR < 0.1;
supplemental Figure 10A; supplemental Table 17). The asso-
ciation between chromosomal aneuploidies and alkylator ther-
apy is known however,46,47 once tMN samples were grouped by
chemotherapy signature presence, a striking pattern emerged:
de novo AML and tMN lacking chemotherapy-induced
11 MAY 2023 | VOLUME 141, NUMBER 19 2365
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mutagenesis shared a similar distribution and frequency of copy
number events, whereas tMN harboring chemotherapy signa-
tures held the majority of significant CNAs, including deletions
of chromosomes 5q, 7q, 17p, and focal gains in 19p13.2
(FDR < 0.1; Figure 4A; supplemental Table 17).

Many previous characterizations of the tMN mutational land-
scape have used targeted or WES. These assays have a limited
resolution for structural variants (SV) and focal CNA. We com-
bined de novo AML and tMN WGS to explore the landscape of
SVs (supplemental methods; supplemental Figure 10B).
Consistent with the CNAs and known cytogenetic complexity,
SVs and complex events (ie, templated insertions, chromoplexy,
and chromothripsis) were significantly enriched within tMN
with evidence of chemotherapy mutagenesis (Wilcoxon test;
P < .001; Figure 4B; supplemental Figure 10C; supplemental
Table 18). Among the complex events, chromothripsis was
the most frequent and was observed in 8 of the 39 tMN cases
(20.5%). This event consists of a catastrophic shattering of
multiple chromosomal regions resulting in the introduction of
disparate drivers.48-51 Strikingly, chromothripsis involving chro-
mosome 19p13.2 with focal amplifications (median 7; range,
5-12 copies) of the SMARCA4 locus comprised 5 of these cases,
with 4 of 5 events found in chemotherapy signature-positive
genomes (Figure 4C; supplemental Figure 11). In comparison,
across the entire cohort of de novo AML genomes and exomes
(n = 316), focal amplification of SMARCA4 was observed in only
1 case with multiple chromosomal aneuploidies (Fisher test;
P < .0001; supplemental Figure 12A). Deleterious mutations in
SMARCA4, generally considered a tumor suppressor gene,
have been implicated in other malignancies including ovarian
carcinoma, and various lymphomas.52-54 As we found it to be
uniformly amplified in tMN, we sought to verify that SMARCA4
overexpression could promote leukemic cell growth. SMARCA4
transfection into Ba/F3 cells demonstrated that gain-of-function
amplification could drive growth when compared with the
vector with IL3 cytokine independence (Figure 4D;
supplemental methods; supplemental Figure 12B). Consistent
with previous evidence, the MECOM locus was also frequently
involved in tMN structural variation, with a preponderance of
tMN containing a chemotherapy-associated signature, further
supporting its role in myeloid tumorigenesis (3 of 4 cases,
Figure 4B; supplemental Figure 11).55-57 Notably, MLL aberra-
tion was found in only 1 patient exposed to melphalan without
SBS-MM1 (supplemental Table 19).
n 18 M
ay 2024
Chemotherapy-related mutational signatures as
molecular barcodes
The accumulation of mutations attributable to constant, clock-
like processes (SBS1, SBS5, and SBS-HSC) can be used to
estimate the age at which a large chromosomal gain occurs in
many malignancies.20,29,58-60 However, in tMN there is a lack of
correlation between clock-like SBS and the age at diagnosis
(supplemental Figure 13A).25 To overcome this limitation, we
developed an approach leveraging chemotherapy-associated
signatures as temporal barcodes by which to time chromo-
somal gains relative to chemotherapy exposure. Specifically, if a
mutation is duplicated across a chromosomal gain, it must have
been present before the event. Consequently, a chemotherapy-
associated mutational signature present within duplicated
mutations necessitates exposure before the gain. Conversely,
2366 11 MAY 2023 | VOLUME 141, NUMBER 19
chemotherapy-associated mutational signatures present only
among nonduplicated clonal or subclonal mutations imply that
the exposure occurred after the chromosomal gain
(Figure 5A).61 We applied this rationale to time acquisition of
CNA and SV before or after chemotherapy exposure. After
collapsing together large events (eg, trisomy and copy neutral
loss of heterozygosity) that occurred within the same molecular
time window (supplemental methods; supplemental
Figure 13B), 8 tMN with chemotherapy signatures were
amenable to temporal barcoding. In all cases, melphalan or
platinum signatures were detectable within duplicated clonal
mutations, implying that large CNAs occurred during or after
exposure to chemotherapy and late in tMN evolution
(Figures 5B-D; supplemental Table 20). Importantly, 1 of the 3
patients exposed to both platinum and melphalan
(IID_H198325), but only harboring platinum SBS signatures, had
a post-chemotherapy trisomy 8 and clonal BCOR mutation not
detected by targeted sequencing. These 2 events are clear
evidence of post-chemotherapy acquisition and ongoing
single-cell expansion, further supporting that a melphalan
signature should also be present if not for escape in the
apheresis product.

As all CNAs associated with chromothripsis occur simulta-
neously within a catastrophic event,62 we similarly applied
this methodology to 3 tMN with large chromothriptic
events characterized by amplified genomic segments with
more than 40 clonal nonclustered mutations.29,60 The
chemotherapy-associated signatures were present in the
duplicated mutations within chromothripsis-associated gains,
including the previously mentioned events in SMARCA4,
supporting that these complex SVs occurred after exposure
to mutagenic therapy (supplemental methods; Figures 5B,E;
supplemental Table 21). These findings are the first
to demonstrate that tMN development can be facilitated
by the acquisition of additional drivers on a preexisting
CH clone.

In the context of chemotherapy-acquired events, we pooled all
somatic events among the tMN genomes (ie, SV, CNA, and
SNV), and found a higher prevalence of TP53 loss (10/16,
62.5%) than in the signature-negative cases (3/23, 13%; Fisher
test; P = .002). Strikingly, among those receiving melphalan/
ASCT, all 6 cases with the SBS-MM1 signature (ie, not reinfused)
had an event involving TP53, as compared with 2/10 (20%)
without the signature (ie, reinfused; Fisher test; P = .007;
supplemental Table 22). Acknowledging the limited sample
size, this stark difference indicates that the loss of TP53 may
allow precursors to survive direct exposure to myeloablative
melphalan and accrue chemotherapy-mediated aberrations.
Precursors with unperturbed TP53 may be preferentially rein-
fused in the transplant or selected by nonmyeloablative
chemotherapy. Given the preponderance of TP53 disruption
and complex genomes, we assessed the outcomes between
chemotherapy-signature-positive and -negative tMN and found
a nonsignificant trend toward shortened survival in the former,
limited by sample size.

Finally, in contrast to tMN, for 2 post-platinum MM, the
associated platinum signatures were seen only in subclonal
(ie, nonduplicated) mutations, in agreement with previous
DIAMOND et al
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knowledge that many chromosomal gains in MM are early
events (Figure 5B).29 We sought to further validate our
approach of chemotherapy-associated SBS barcoding with
molecular time.29,58,60 We first calculated the individual SBS5
mutation rate per year for the 2 secondary MM and found no
significant difference when compared with 77 WGS from 47
patients with primary or smoldering MM (supplemental
methods; supplemental Figure 13C).29 Collapsing together
large chromosomal gains occurring within the same time win-
dow, we estimated the SBS5-based molecular time to predict at
which age these 2 patients acquired the first multichromosomal
gain event and the emergence of the most recent common
ancestor (MRCA) (supplemental methods; Figure 6A;
supplemental Figure 13B). Consistent with previous reports, in
both cases, the initiating gains were estimated to have occurred
in the 2nd decade of life29 and MRCA arose before the diag-
nosis of the unrelated primary malignancy (ie, the solid tumor)
and the associated platinum exposure. SBS5-based molecular
time therefore aligns with the presence of platinum-associated
signatures among only subclonal mutations (ie, exposure and
mutagenesis after the gains) and, overall, validates
chemotherapy-associated mutational signatures as temporal
molecular barcodes that can be used to validate the absolute
time of acquisition of copy number gains.20,58,63
et/blood/article-pdf/141/19/2359/2050651/blood_bld-2022-018244-m
ain.pdf by guest on 18 M

ay 2024
Discussion
Using WGS of tMN samples from patients exposed to a variety
of antineoplastic agents and targeted sequencing of pretherapy
samples, we characterized the mutational impact of chemo-
therapy and used chemotherapy-associated SBS signatures as
temporal barcodes to reconstruct the evolution of tMN from its
antecedent CH (Figure 6B). This is the first WGS profiling of
tMN post–high-dose melphalan and ASCT (eg, post-MM) and
the first evidence that, similar to its effects in MM and aggres-
sive lymphomas, melphalan has direct mutagenic activity on
tMN. Overall, because of the heterogeneity of the cohort and
the inclusion of tMN exposed to melphalan, platinum, or other
agents, our data confirmed that tMN evolving with
chemotherapy-induced mutagenesis (ie, chemotherapy muta-
tional signatures) is relatively hypermutated compared with de
novo AML and tMN that develop without the direct mutational
influence of chemotherapy. We also observed enrichment for
distinct CNAs and SVs, including chromothripsis, among tMN
with chemotherapy-induced mutagenesis. These data highlight
the need for WGS to characterize the full landscape of alter-
ations in these complex malignancies. Although we observe
here in a retrospective genomic analysis that all tMN with evi-
dence of chemotherapy-induced mutagenesis had TP53
disruption, we cannot generalize the risk of progression to
TP53-variant CH. Prospective studies are needed to ascertain
the individual risk of tMN, considering both variants of under-
lying CH and therapeutic interventions.
Figure 5 (continued) SBS-MM1 (melphalan) signature contribution within duplicated (ie, p
relapse (left). Duplicated mutations (right) showed a large contribution from SBS35
Chromothripsis event on chromosome 19 (SMARCA4) with multiple duplications
chromothripsis-associated amplifications (right) was enriched for the SBS-MM1 cont
exposure. In (C-E), the horizontal black line indicates the total copy number and the
represent SVs breakpoints, color-coded based on SVs class: blue, inversion; green, tand
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Prior studies have suggested that progression to tMN is driven by
the chemotherapy-mediated selection of preexisting CH harboring
distinct leukemic driver SNV. Here, we see supporting data in the
form of the detection of antecedent CH in pretherapy samples and
in theminimal contribution of chemotherapy signatures amongCH
mutations from platinum-exposed individuals. However, the tem-
poral relationship of other genomic drivers, such as complex CNA
and SV, with chemotherapy has been largely unexplored.25 Using a
new approach based on chemotherapy signatures in duplicated
SNV within chromosomal gains, we see that in contrast to driver
SNV, which are almost universally selected and not caused by
chemotherapy, chromothripsis and chromosomal gains are
frequently acquired after mutagenic chemotherapy. These com-
bined observations support a model in which exposure to distinct
genotoxic chemotherapies can both select for and increase the
genomic complexity of preexisting CH during the progression to
tMN (Figure 6B). One limitation of our approach is its inability to
provide estimates of deletions, for which no temporal approach has
yet been developed. Importantly, chemotherapy temporal bar-
coding was seen here to be an orthogonal validation of previously
reported molecular timing approaches for determining the age of
large chromosomal gains in MM.29,58

Our investigations also characterized the disparate routes
through which a preexisting CH clone can progress to tMN after
high-dose melphalan and ASCT. CH clones have previously been
isolated from apheresis products, indicating that they can indeed
be reinfused during the ASCT procedure.4,7 Nevertheless,
because the CH clone is present in both the bone marrow and
apheresis products, it has not been possible to define which
reservoir will be the source responsible for the progression into
tMN. By leveraging mutational signatures as temporal barcodes,
we were able to demonstrate that tMN may originate either from
a reinfused CH clone or by an intrinsic TP53-mutant CH that
survives myeloablative conditioning with high-dose melphalan.64

Although it is known that an increased chemotherapy-induced
mutational burden is not requisite for tMN progression,12,25

post-ASCT tMN expansion in the absence of a melphalan
signature indicates that direct cellular exposure to mutagenic
chemotherapy may be required. This route of chemotherapy
evasion places increased emphasis on leukemia-permissive
effects of both mutagenic and nonmutagenic chemotherapy on
the bone marrow compartment.11,12,65 In agreement with our
findings, chemotherapy and transplantation have been shown to
confer selective pressure on progenitor cells in a relatively vacant
and dysfunctional marrow niche, such that hematopoiesis is
reconstituted by a limited number of clones.66-69 Altogether,
several lines of evidence suggest that the evolution of precursor
states into their malignant successors is likely driven by a com-
plex interaction between inflammation, mutagenesis, and
immune suppression.2,12,26-28,70,71 Our findings add resolution
into the different routes of post-ASCT tMN progression, medi-
ated by both selective and mutagenic aspects of therapy. As
immunomodulatory and cellular therapies enter widespread
regain) mutations (top right). (D) Example of whole-genome duplication during tMN
(platinum), suggesting that this event was acquired after platinum exposure. (E)
(left). Similar to (D), the duplicated mutational signature contribution within
ribution, implying that the chromothripsis event was acquired after melphalan
dashed orange line indicates the minor copy number. In (E), the vertical lines

em-duplication; red, deletion; black, translocation.
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clinical practice, it is becoming increasingly important to char-

acterize their complex immune effects in the context of their
ability to promote tMN evolution.
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