• We characterized erythropoiesis and iron metabolism in a new model of XLSA, showing ring sideroblasts and mitochondrial iron accumulation.

  • We used a novel and lentiviral vector expressing the human ALAS2 gene to rescue these animals from lethal anemia.

Abstract

X-linked sideroblastic anemia (XLSA) is a congenital anemia caused by mutations in ALAS2, a gene responsible for heme synthesis. Treatments are limited to pyridoxine supplements and blood transfusions, offering no definitive cure except for allogeneic hematopoietic stem cell transplantation, only accessible to a subset of patients. The absence of a suitable animal model has hindered the development of gene therapy research for this disease. We engineered a conditional Alas2-knockout (KO) mouse model using tamoxifen administration or treatment with lipid nanoparticles carrying Cre-mRNA and conjugated to an anti-CD117 antibody. Alas2-KOBM animals displayed a severe anemic phenotype characterized by ineffective erythropoiesis (IE), leading to low numbers of red blood cells, hemoglobin, and hematocrit. In particular, erythropoiesis in these animals showed expansion of polychromatic erythroid cells, characterized by reduced oxidative phosphorylation, mitochondria’s function, and activity of key tricarboxylic acid cycle enzymes. In contrast, glycolysis was increased in the unsuccessful attempt to extend cell survival despite mitochondrial dysfunction. The IE was associated with marked splenomegaly and low hepcidin levels, leading to iron accumulation in the liver, spleen, and bone marrow and the formation of ring sideroblasts. To investigate the potential of a gene therapy approach for XLSA, we developed a lentiviral vector (X-ALAS2-LV) to direct ALAS2 expression in erythroid cells. Infusion of bone marrow (BM) cells with 0.6 to 1.4 copies of the X-ALAS2-LV in Alas2-KOBM mice improved complete blood cell levels, tissue iron accumulation, and survival rates. These findings suggest our vector could be curative in patients with XLSA.

1.
Fujiwara
T
,
Harigae
H
.
Molecular pathophysiology and genetic mutations in congenital sideroblastic anemia
.
Free Radic Biol Med
.
2019
;
133
:
179
-
185
.
2.
Ducamp
S
,
Fleming
MD
.
The molecular genetics of sideroblastic anemia
.
Blood
.
2019
;
133
(
1
):
59
-
69
.
3.
Bottomley
SS
,
Fleming
MD
.
Sideroblastic anemia: diagnosis and management
.
Hematol Oncol Clin North Am
.
2014
;
28
(
4
):
653
-
670
.
4.
Liu
J
,
Li
Y
,
Tong
J
, et al
.
Long non-coding RNA-dependent mechanism to regulate heme biosynthesis and erythrocyte development
.
Nat Commun
.
2018
;
9
(
1
):
4386
.
5.
Zhang
Y
,
Zhang
J
,
An
W
, et al
.
Intron 1 GATA site enhances ALAS2 expression indispensably during erythroid differentiation
.
Nucleic Acids Res
.
2017
;
45
(
2
):
657
-
671
.
6.
Khechaduri
A
,
Bayeva
M
,
Chang
HC
,
Ardehali
H
.
Heme levels are increased in human failing hearts
.
J Am Coll Cardiol
.
2013
;
61
(
18
):
1884
-
1893
.
7.
Ohba
R
,
Furuyama
K
,
Yoshida
K
, et al
.
Clinical and genetic characteristics of congenital sideroblastic anemia: comparison with myelodysplastic syndrome with ring sideroblast (MDS-RS)
.
Ann Hematol
.
2013
;
92
(
1
):
1
-
9
.
8.
Cotter
PD
,
May
A
,
Fitzsimons
EJ
, et al
.
Late-onset X-linked sideroblastic anemia: missense mutations in the erythroid delta-aminolevulinate synthase (ALAS2) gene in two pyridoxine-responsive patients initially diagnosed with acquired refractory anemia and ringed sideroblasts
.
J Clin Invest
.
1995
;
96
(
4
):
2090
-
2096
.
9.
Cazzola
M
,
May
A
,
Bergamaschi
G
,
Cerani
P
,
Rosti
V
,
Bishop
DF
.
Familial-skewed X-chromosome inactivation as a predisposing factor for late-onset X-linked sideroblastic anemia in carrier females
.
Blood
.
2000
;
96
(
13
):
4363
-
4365
.
10.
Aivado
M
,
Gattermann
N
,
Rong
A
, et al
.
X-linked sideroblastic anemia associated with a novel ALAS2 mutation and unfortunate skewed X-chromosome inactivation patterns
.
Blood Cells Mol Dis
.
2006
;
37
(
1
):
40
-
45
.
11.
Rose
C
,
Callebaut
I
,
Pascal
L
, et al
.
Lethal ALAS2 mutation in males X-linked sideroblastic anaemia
.
Br J Haematol
.
2017
;
178
(
4
):
648
-
651
.
12.
Ducamp
S
,
Kannengiesser
C
,
Touati
M
, et al
.
Sideroblastic anemia: molecular analysis of the ALAS2 gene in a series of 29 probands and functional studies of 10 missense mutations
.
Hum Mutat
.
2011
;
32
(
6
):
590
-
597
.
13.
Katsurada
T
,
Kawabata
H
,
Kawabata
D
, et al
.
A Japanese family with X-linked sideroblastic anemia affecting females and manifesting as macrocytic anemia
.
Int J Hematol
.
2016
;
103
(
6
):
713
-
717
.
14.
Morimoto
Y
,
Chonabayashi
K
,
Kawabata
H
, et al
.
Azacitidine is a potential therapeutic drug for pyridoxine-refractory female X-linked sideroblastic anemia
.
Blood Adv
.
2022
;
6
(
4
):
1100
-
1114
.
15.
Yoshida
K
,
Sanada
M
,
Shiraishi
Y
, et al
.
Frequent pathway mutations of splicing machinery in myelodysplasia
.
Nature
.
2011
;
478
(
7367
):
64
-
69
.
16.
Bekri
S
,
May
A
,
Cotter
PD
, et al
.
A promoter mutation in the erythroid-specific 5-aminolevulinate synthase (ALAS2) gene causes X-linked sideroblastic anemia
.
Blood
.
2003
;
102
(
2
):
698
-
704
.
17.
Kaneko
K
,
Furuyama
K
,
Fujiwara
T
, et al
.
Identification of a novel erythroid-specific enhancer for the ALAS2 gene and its loss-of-function mutation which is associated with congenital sideroblastic anemia
.
Haematologica
.
2014
;
99
(
2
):
252
-
261
.
18.
Astner
I
,
Schulze
JO
,
van den Heuvel
J
,
Jahn
D
,
Schubert
WD
,
Heinz
DW
.
Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans
.
EMBO J
.
2005
;
24
(
18
):
3166
-
3177
.
19.
May
A
,
Bishop
DF
.
The molecular biology and pyridoxine responsiveness of X-linked sideroblastic anaemia
.
Haematologica
.
1998
;
83
(
1
):
56
-
70
.
20.
Ishida
H
,
Imamura
T
,
Morimoto
A
,
Fujiwara
T
,
Harigae
H
.
Five-aminolevulinic acid: new approach for congenital sideroblastic anemia
.
Pediatr Int
.
2018
;
60
(
5
):
496
-
497
.
21.
Cavazzana-Calvo
M
,
Payen
E
,
Negre
O
, et al
.
Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia
.
Nature
.
2010
;
467
(
7313
):
318
-
322
.
22.
Negre
O
,
Eggimann
AV
,
Beuzard
Y
, et al
.
Gene therapy of the beta-hemoglobinopathies by lentiviral transfer of the beta(A(T87Q))-globin gene
.
Hum Gene Ther
.
2016
;
27
(
2
):
148
-
165
.
23.
Miccio
A
,
Cesari
R
,
Lotti
F
, et al
.
In vivo selection of genetically modified erythroblastic progenitors leads to long-term correction of beta-thalassemia
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
30
):
10547
-
10552
.
24.
Negre
O
,
Bartholomae
C
,
Beuzard
Y
, et al
.
Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of beta-thalassemia and sickle cell disease
.
Curr Gene Ther
.
2015
;
15
(
1
):
64
-
81
.
25.
Boulad
F
,
Wang
X
,
Qu
J
, et al
.
Safe mobilization of CD34+ cells in adults with beta-thalassemia and validation of effective globin gene transfer for clinical investigation
.
Blood
.
2014
;
123
(
10
):
1483
-
1486
.
26.
Breda
L
,
Ghiaccio
V
,
Tanaka
N
, et al
.
Lentiviral vector ALS20 yields high hemoglobin levels with low genomic integrations for treatment of beta-globinopathies
.
Mol Ther
.
2021
;
29
(
4
):
1625
-
1638
.
27.
Nakajima
O
,
Takahashi
S
,
Harigae
H
, et al
.
Heme deficiency in erythroid lineage causes differentiation arrest and cytoplasmic iron overload
.
EMBO J
.
1999
;
18
(
22
):
6282
-
6289
.
28.
Peoc'h
K
,
Nicolas
G
,
Schmitt
C
, et al
.
Regulation and tissue-specific expression of delta-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias
.
Mol Genet Metab
.
2019
;
128
(
3
):
190
-
197
.
29.
Feil
S
,
Valtcheva
N
,
Feil
R
.
Inducible Cre mice
.
Methods Mol Biol
.
2009
;
530
:
343
-
363
.
30.
Breda
L
,
Papp
TE
,
Triebwasser
MP
, et al
.
In vivo hematopoietic stem cell modification by mRNA delivery
.
Science
.
2023
;
381
(
6656
):
436
-
443
.
31.
Liu
J
,
Zhang
J
,
Ginzburg
Y
, et al
.
Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis
.
Blood
.
2013
;
121
(
8
):
e43
-
e49
.
32.
Richard
C
,
Verdier
F
.
Transferrin receptors in erythropoiesis
.
Int J Mol Sci
.
2020
;
21
(
24
):
9713
.
33.
Guerra
A
,
Parhiz
H
,
Rivella
S
.
Novel potential therapeutics to modify iron metabolism and red cell synthesis in diseases associated with defective erythropoiesis
.
Haematologica
.
2023
;
108
(
10
):
2582
-
2593
.
34.
Cogliati
S
,
Enriquez
JA
,
Scorrano
L
.
Mitochondrial cristae: where beauty meets functionality
.
Trends Biochem Sci
.
2016
;
41
(
3
):
261
-
273
.
35.
Breda
L
,
Casu
C
,
Gardenghi
S
, et al
.
Therapeutic hemoglobin levels after gene transfer in beta-thalassemia mice and in hematopoietic cells of beta-thalassemia and sickle cells disease patients
.
PLoS One
.
2012
;
7
(
3
):
e32345
.
36.
Roselli
EA
,
Mezzadra
R
,
Frittoli
MC
, et al
.
Correction of beta-thalassemia major by gene transfer in haematopoietic progenitors of pediatric patients
.
EMBO Mol Med
.
2010
;
2
(
8
):
315
-
328
.
37.
Romero
Z
,
Campo-Fernandez
B
,
Wherley
J
, et al
.
The human ankyrin 1 promoter insulator sustains gene expression in a beta-globin lentiviral vector in hematopoietic stem cells
.
Mol Ther Methods Clin Dev
.
2015
;
2
:
15012
.
38.
Burgess
DJ
.
Gene therapy: insulating from genotoxicity
.
Nat Rev Genet
.
2015
;
16
(
3
):
130
-
131
.
39.
Rivella
S
,
Sadelain
M
.
Genetic treatment of severe hemoglobinopathies: the combat against transgene variegation and transgene silencing
.
Semin Hematol
.
1998
;
35
(
2
):
112
-
125
.
40.
Browning
DL
,
Trobridge
GD
.
Insulators to improve the safety of retroviral vectors for HIV gene therapy
.
Biomedicines
.
2016
;
4
(
1
):
4
.
41.
Zhou
X
,
Liu
Q
,
Wang
D
,
Zhang
X
,
Emery
DW
,
Li
CL
.
The cHS4 chromatin insulator reduces the rate of retroviral vector-mediated gene dysregulation associated with aberrant vector transcription
.
Cytogenet Genome Res
.
2017
;
151
(
2
):
72
-
81
.
42.
Goodman
MA
,
Arumugam
P
,
Pillis
DM
, et al
.
Foamy virus vector carries a strong insulator in its long terminal repeat which reduces its genotoxic potential
.
J Virol
.
2018
;
92
(
1
):
e01639-17
.
43.
Rivella
S
,
Callegari
JA
,
May
C
,
Tan
CW
,
Sadelain
M
.
The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites
.
J Virol
.
2000
;
74
(
10
):
4679
-
4687
.
44.
Camaschella
C
.
Hereditary sideroblastic anemias: pathophysiology, diagnosis, and treatment
.
Semin Hematol
.
2009
;
46
(
4
):
371
-
377
.
45.
Furuyama
K
,
Sassa
S
.
Multiple mechanisms for hereditary sideroblastic anemia
.
Cell Mol Biol (Noisy-le-grand)
.
2002
;
48
(
1
):
5
-
10
.
46.
Bergmann
AK
,
Campagna
DR
,
McLoughlin
EM
, et al
.
Systematic molecular genetic analysis of congenital sideroblastic anemia: evidence for genetic heterogeneity and identification of novel mutations
.
Pediatr Blood Cancer
.
2010
;
54
(
2
):
273
-
278
.
47.
Camaschella
C
.
Recent advances in the understanding of inherited sideroblastic anaemia
.
Br J Haematol
.
2008
;
143
(
1
):
27
-
38
.
48.
Fleming
MD
.
Congenital sideroblastic anemias: iron and heme lost in mitochondrial translation
.
Hematology Am Soc Hematol Educ Program
.
2011
;
2011
:
525
-
531
.
49.
Furuyama
K
,
Harigae
H
,
Kinoshita
C
, et al
.
Late-onset X-linked sideroblastic anemia following hemodialysis
.
Blood
.
2003
;
101
(
11
):
4623
-
4624
.
50.
Papa
L
,
Djedaini
M
,
Hoffman
R
.
Mitochondrial role in stemness and differentiation of hematopoietic stem cells
.
Stem Cells Int
.
2019
;
2019
:
4067162
.
51.
Vannini
N
,
Girotra
M
,
Naveiras
O
, et al
.
Specification of haematopoietic stem cell fate via modulation of mitochondrial activity
.
Nat Commun
.
2016
;
7
:
13125
.
52.
Sen
T
,
Jain
M
,
Gram
M
, et al
.
Enhancing mitochondrial function in vivo rescues MDS-like anemia induced by pRb deficiency
.
Exp Hematol
.
2020
;
88
:
28
-
41
.
53.
Fiorito
V
,
Allocco
AL
,
Petrillo
S
, et al
.
The heme synthesis-export system regulates the tricarboxylic acid cycle flux and oxidative phosphorylation
.
Cell Rep
.
2021
;
35
(
11
):
109252
.
54.
Petrillo
S
,
De Giorgio
F
,
Kopecka
J
, et al
.
Endothelial heme dynamics drive cancer cell metabolism by shaping the tumor microenvironment
.
Biomedicines
.
2021
;
9
(
11
):
1557
.
55.
Lira Zidanes
A
,
Marchi
G
,
Busti
F
, et al
.
A novel ALAS2 missense mutation in two brothers with iron overload and associated alterations in serum hepcidin/erythroferrone levels
.
Front Physiol
.
2020
;
11
:
581386
.
56.
Ducamp
S
,
Sendamarai
A
,
Campagna
DR
, et al
.
Murine models of erythroid 5ALA synthesis disorders and their conditional synthetic lethal dependency on pyridoxine
.
Blood
.
2024
;
144
(
13
):
1418
-
1432
.
57.
Ono
K
,
Fujiwara
T
,
Saito
K
, et al
.
Congenital sideroblastic anemia model due to ALAS2 mutation is susceptible to ferroptosis
.
Sci Rep
.
2022
;
12
(
1
):
9024
.
58.
Kaneko
K
,
Kubota
Y
,
Nomura
K
, et al
.
Establishment of a cell model of X-linked sideroblastic anemia using genome editing
.
Exp Hematol
.
2018
;
65
:
57
-
68.e2
.
You do not currently have access to this content.
Sign in via your Institution