• This study provides an overall picture of driver mutations in ML-DS, including novel and frequent IRX1 and ZBTB7A mutations, and RUNX1-PTD.

  • CDKN2A and TP53 deletions and/or mutations are associated with a poor prognosis in ML-DS.

Abstract

Transient abnormal myelopoiesis (TAM) is a common complication in newborns with Down syndrome (DS). It commonly progresses to myeloid leukemia (ML-DS) after spontaneous regression. In contrast to the favorable prognosis of primary ML-DS, patients with refractory/relapsed ML-DS have poor outcomes. However, the molecular basis for refractoriness and relapse and the full spectrum of driver mutations in ML-DS remain largely unknown. We conducted a genomic profiling study of 143 TAM, 204 ML-DS, and 34 non-DS acute megakaryoblastic leukemia cases, including 39 ML-DS cases analyzed by exome sequencing. Sixteen novel mutational targets were identified in ML-DS samples. Of these, inactivations of IRX1 (16.2%) and ZBTB7A (13.2%) were commonly implicated in the upregulation of the MYC pathway and were potential targets for ML-DS treatment with bromodomain-containing protein 4 inhibitors. Partial tandem duplications of RUNX1 on chromosome 21 were also found, specifically in ML-DS samples (13.7%), presenting its essential role in DS leukemia progression. Finally, in 177 patients with ML-DS treated following the same ML-DS protocol (the Japanese Pediatric Leukemia and Lymphoma Study Group acute myeloid leukemia -D05/D11), CDKN2A, TP53, ZBTB7A, and JAK2 alterations were associated with a poor prognosis. Patients with CDKN2A deletions (n = 7) or TP53 mutations (n = 4) had substantially lower 3-year event-free survival (28.6% vs 90.5%; P < .001; 25.0% vs 89.5%; P < .001) than those without these mutations. These findings considerably change the mutational landscape of ML-DS, provide new insights into the mechanisms of progression from TAM to ML-DS, and help identify new therapeutic targets and strategies for ML-DS.

1.
Ito
E
,
Kasai
M
,
Hayashi
Y
, et al
.
Expression of erythroid-specific genes in acute megakaryoblastic leukemia and transient myeloproliferative disorder in Down syndrome
.
Br J Haematol
.
1995
;
90
(
3
):
607
-
614
.
2.
Hasle
H
,
Niemeyer
CM
,
Chessells
JM
, et al
.
A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases
.
Leukemia
.
2003
;
17
(
2
):
277
-
282
.
3.
Wechsler
J
,
Greene
M
,
McDevitt
MA
, et al
.
Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome
.
Nat Genet
.
2002
;
32
(
1
):
148
-
152
.
4.
Mundschau
G
,
Gurbuxani
S
,
Gamis
AS
,
Greene
ME
,
Arceci
RJ
,
Crispino
JD
.
Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis
.
Blood
.
2003
;
101
(
11
):
4298
-
4300
.
5.
Hitzler
JK
,
Cheung
J
,
Li
Y
,
Scherer
SW
,
Zipursky
A
.
GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome
.
Blood
.
2003
;
101
(
11
):
4301
-
4304
.
6.
Rainis
L
,
Bercovich
D
,
Strehl
S
, et al
.
Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21
.
Blood
.
2003
;
102
(
3
):
981
-
986
.
7.
Xu
G
,
Nagano
M
,
Kanezaki
R
, et al
.
Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down syndrome
.
Blood
.
2003
;
102
(
8
):
2960
-
2968
.
8.
Yoshida
K
,
Toki
T
,
Okuno
Y
, et al
.
The landscape of somatic mutations in Down syndrome-related myeloid disorders
.
Nat Genet
.
2013
;
45
(
11
):
1293
-
1299
.
9.
Labuhn
M
,
Perkins
K
,
Matzk
S
, et al
.
Mechanisms of progression of myeloid preleukemia to transformed myeloid leukemia in children with Down syndrome
.
Cancer Cell
.
2019
;
36
(
3
):
340
. 138.
10.
Taga
T
,
Saito
AM
,
Kudo
K
, et al
.
Clinical characteristics and outcome of refractory/relapsed myeloid leukemia in children with Down syndrome
.
Blood
.
2012
;
120
(
9
):
1810
-
1815
.
11.
Taub
JW
,
Berman
JN
,
Hitzler
JK
, et al
.
Improved outcomes for myeloid leukemia of Down syndrome: a report from the Children’s Oncology Group AAML0431 trial
.
Blood
.
2017
;
129
(
25
):
3304
-
3313
.
12.
Raghuram
N
,
Hasegawa
D
,
Nakashima
K
, et al
.
Survival outcomes of children with relapsed or refractory myeloid leukemia associated with Down syndrome
.
Blood Adv
.
2023
;
7
(
21
):
6532
-
6539
.
13.
Taga
T
,
Tanaka
S
,
Hasegawa
D
, et al
.
Post-induction MRD by FCM and GATA1-PCR are significant prognostic factors for myeloid leukemia of Down syndrome
.
Leukemia
.
2021
;
35
(
9
):
2508
-
2516
.
14.
Taga
T
,
Watanabe
T
,
Tomizawa
D
, et al
.
Preserved high probability of overall survival with significant reduction of chemotherapy for myeloid leukemia in Down syndrome: a nationwide prospective study in Japan
.
Pediatr Blood Cancer
.
2016
;
63
(
2
):
248
-
254
.
15.
Tomizawa
D
,
Tawa
A
,
Watanabe
T
, et al
.
Appropriate dose reduction in induction therapy is essential for the treatment of infants with acute myeloid leukemia: a report from the Japanese Pediatric Leukemia/Lymphoma Study Group
.
Int J Hematol
.
2013
;
98
(
5
):
578
-
588
.
16.
Yamato
G
,
Deguchi
T
,
Terui
K
, et al
.
Predictive factors for the development of leukemia in patients with transient abnormal myelopoiesis and Down syndrome
.
Leukemia
.
2021
;
35
(
5
):
1480
-
1484
.
17.
Shiraishi
Y
,
Tremmel
G
,
Miyano
S
,
Stephens
M
.
A simple model-based approach to inferring and visualizing cancer mutation signatures
.
PLoS Genet
.
2015
;
11
(
12
):
e1005657
.
18.
Martincorena
I
,
Raine
KM
,
Gerstung
M
, et al
.
Universal patterns of selection in cancer and somatic tissues
.
Cell
.
2017
;
171
(
5
):
1029
-
1041.e21
.
19.
Yoshizato
T
,
Nannya
Y
,
Atsuta
Y
, et al
.
Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation
.
Blood
.
2017
;
129
(
17
):
2347
-
2358
.
20.
de Rooij
JD
,
Branstetter
C
,
Ma
J
, et al
.
Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes
.
Nat Genet
.
2017
;
49
(
3
):
451
-
456
.
21.
Houweling
AC
,
Dildrop
R
,
Peters
T
, et al
.
Gene and cluster-specific expression of the Iroquois family members during mouse development
.
Mech Dev
.
2001
;
107
(
1-2
):
169
-
174
.
22.
Maeda
T
,
Ito
K
,
Merghoub
T
, et al
.
LRF is an essential downstream target of GATA1 in erythroid development and regulates BIM-dependent apoptosis
.
Dev Cell
.
2009
;
17
(
4
):
527
-
540
.
23.
Hartmann
L
,
Dutta
S
,
Opatz
S
, et al
.
ZBTB7A mutations in acute myeloid leukaemia with t(8;21) translocation
.
Nat Commun
.
2016
;
7
:
11733
.
24.
Miyoshi
H
,
Ohira
M
,
Shimizu
K
, et al
.
Alternative spicing and genetic structure of the AML1 gene involved in acute myeloid leukemia
.
Nucleic Acids Res
.
1995
;
23
(
14
):
2762
-
2769
.
25.
Klusmann
JH
,
Godinho
FJ
,
Heitmann
K
, et al
.
Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis
.
Genes Dev
.
2010
;
24
(
15
):
1659
-
1672
.
26.
Pessler
F
,
Hernandez
N
.
Flexible DNA binding of the BTB/POZ-domain protein FBI-1
.
J Biol Chem
.
2003
;
278
(
31
):
29327
-
29335
.
27.
Delmore
JE
,
Issa
GC
,
Lemieux
ME
, et al
.
BET bromodomain inhibition as a therapeutic strategy to target c-MYC
.
Cell
.
2011
;
146
(
6
):
904
-
917
.
28.
Piya
S
,
Mu
H
,
Bhattacharya
S
, et al
.
BETP degradation simultaneously targets acute myelogenous leukemia stem cells and the microenvironment
.
J Clin Invest
.
2019
;
129
(
5
):
1878
-
1894
.
29.
Mateyak
MK
,
Obaya
AJ
,
Sedivy
JM
.
c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points
.
Mol Cell Biol
.
1999
;
19
(
7
):
4672
-
4683
.
30.
Xu
G
,
Kanezaki
R
,
Toki
T
, et al
.
Physical association of the patient-specific GATA1 mutants with RUNX1 in acute megakaryoblastic leukemia accompanying Down syndrome
.
Leukemia
.
2006
;
20
(
6
):
1002
-
1008
.
31.
Brady
G
,
Elgueta Karstegl
C
,
Farrell
PJ
.
Novel function of the unique N-terminal region of RUNX1c in B cell growth regulation
.
Nucleic Acids Res
.
2013
;
41
(
3
):
1555
-
1568
.
32.
Gronostajski
RM
.
Roles of the NFI/CTF gene family in transcription and development
.
Gene
.
2000
;
249
(
1-2
):
31
-
45
.
33.
Starnes
LM
,
Sorrentino
A
,
Pelosi
E
, et al
.
NFI-A directs the fate of hematopoietic progenitors to the erythroid or granulocytic lineage and controls beta-globin and G-CSF receptor expression
.
Blood
.
2009
;
114
(
9
):
1753
-
1763
.
34.
Micci
F
,
Thorsen
J
,
Panagopoulos
I
, et al
.
High-throughput sequencing identifies an NFIA/CBFA2T3 fusion gene in acute erythroid leukemia with t(1;16)(p31;q24)
.
Leukemia
.
2013
;
27
(
4
):
980
-
982
.
35.
Yoshihara
K
,
Wang
Q
,
Torres-Garcia
W
, et al
.
The landscape and therapeutic relevance of cancer-associated transcript fusions
.
Oncogene
.
2015
;
34
(
37
):
4845
-
4854
.
36.
Hakimi
MA
,
Dong
Y
,
Lane
WS
,
Speicher
DW
,
Shiekhattar
R
.
Candidate X-linked mental retardation gene is a component of a new family of histone deacetylase-containing complexes
.
J Biol Chem
.
2003
;
278
(
9
):
7234
-
7239
.
37.
Wang
ET
,
Cody
NA
,
Jog
S
, et al
.
Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins
.
Cell
.
2012
;
150
(
4
):
710
-
724
.
38.
Cheng
AW
,
Shi
J
,
Wong
P
, et al
.
Muscleblind like 1 (Mbnl1) regulates pre-mRNA alternative splicing during terminal erythropoiesis
.
Blood
.
2014
;
124
(
4
):
598
-
610
.
39.
Bolouri
H
,
Farrar
JE
,
Triche
T
, et al
.
The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions
.
Nat Med
.
2018
;
24
(
1
):
103
-
112
.
40.
Matsuyama
T
,
Kimura
T
,
Kitagawa
M
, et al
.
Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development
.
Cell
.
1993
;
75
(
1
):
83
-
97
.
41.
Xu
J
,
Shao
Z
,
Glass
K
, et al
.
Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis
.
Dev Cell
.
2012
;
23
(
4
):
796
-
811
.
42.
Jutzi
JS
,
Bogeska
R
,
Nikoloski
G
, et al
.
MPN patients harbor recurrent truncating mutations in transcription factor NF-E2
.
J Exp Med
.
2013
;
210
(
5
):
1003
-
1019
.
43.
Jutzi
JS
,
Basu
T
,
Pellmann
M
, et al
.
Altered NFE2 activity predisposes to leukemic transformation and myelosarcoma with AML-specific aberrations
.
Blood
.
2019
;
133
(
16
):
1766
-
1777
.
44.
Iacobucci
I
,
Li
Y
,
Roberts
KG
, et al
.
Truncating erythropoietin receptor rearrangements in acute lymphoblastic leukemia
.
Cancer Cell
.
2016
;
29
(
2
):
186
-
200
.
45.
Takeda
J
,
Yoshida
K
,
Nakagawa
MM
, et al
.
Amplified EPOR/JAK2 genes define a unique subtype of acute erythroid leukemia
.
Blood Cancer Discov
.
2022
;
3
(
5
):
410
-
427
.
46.
de la Chapelle
A
,
Träskelin
AL
,
Juvonen
E
.
Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis
.
Proc Natl Acad Sci U S A
.
1993
;
90
(
10
):
4495
-
4499
.
47.
Burkhart
DL
,
Sage
J
.
Cellular mechanisms of tumour suppression by the retinoblastoma gene
.
Nat Rev Cancer
.
2008
;
8
(
9
):
671
-
682
.
48.
González-Gil
C
,
Ribera
J
,
Ribera
JM
,
Genescà
E
.
The Yin and Yang-Like clinical implications of the CDKN2A/ARF/CDKN2B gene cluster in acute lymphoblastic leukemia
.
Genes
.
2021
;
12
(
1
):
79
.
49.
Faderl
S
,
Kantarjian
HM
,
Estey
E
, et al
.
The prognostic significance of p16(INK4a)/p14(ARF) locus deletion and MDM-2 protein expression in adult acute myelogenous leukemia
.
Cancer
.
2000
;
89
(
9
):
1976
-
1982
.
50.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
51.
Mullighan
CG
,
Zhang
J
,
Harvey
RC
, et al
.
JAK mutations in high-risk childhood acute lymphoblastic leukemia
.
Proc Natl Acad Sci U S A
.
2009
;
106
(
23
):
9414
-
9418
.
52.
Roberts
KG
,
Li
Y
,
Payne-Turner
D
, et al
.
Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia
.
N Engl J Med
.
2014
;
371
(
11
):
1005
-
1015
.
53.
Brady
SW
,
Roberts
KG
,
Gu
Z
, et al
.
The genomic landscape of pediatric acute lymphoblastic leukemia
.
Nat Genet
.
2022
;
54
(
9
):
1376
-
1389
.
54.
Li
Z
,
Chang
TC
,
Junco
JJ
, et al
.
Genomic landscape of Down syndrome-associated acute lymphoblastic leukemia
.
Blood
.
2023
;
142
(
2
):
172
-
184
.
55.
Klusmann
JH
,
Creutzig
U
,
Zimmermann
M
, et al
.
Treatment and prognostic impact of transient leukemia in neonates with Down syndrome
.
Blood
.
2008
;
111
(
6
):
2991
-
2998
.
56.
Gamis
AS
,
Alonzo
TA
,
Gerbing
RB
, et al
.
Natural history of transient myeloproliferative disorder clinically diagnosed in Down syndrome neonates: a report from the Children's Oncology Group Study A2971
.
Blood
.
2011
;
118
(
26
):
6752
-
6996
.
57.
Ichikawa
M
,
Yoshimi
A
,
Nakagawa
M
,
Nishimoto
N
,
Watanabe-Okochi
N
,
Kurokawa
M
.
A role for RUNX1 in hematopoiesis and myeloid leukemia
.
Int J Hematol
.
2013
;
97
(
6
):
726
-
734
.
58.
Korbel
JO
,
Tirosh-Wagner
T
,
Urban
AE
, et al
.
The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies
.
Proc Natl Acad Sci U S A
.
2009
;
106
(
29
):
12031
-
12036
.
59.
Banno
K
,
Omori
S
,
Hirata
K
, et al
.
Systematic cellular disease models reveal synergistic interaction of trisomy 21 and GATA1 mutations in hematopoietic abnormalities
.
Cell Rep
.
2016
;
15
(
6
):
1228
-
1241
.
60.
Gialesaki
S
,
Bräuer-Hartmann
D
,
Issa
H
, et al
.
RUNX1 isoform disequilibrium promotes the development of trisomy 21-associated myeloid leukemia
.
Blood
.
2023
;
141
(
10
):
1105
-
1118
.
You do not currently have access to this content.
Sign in via your Institution