• Loss of GABARAP abrogates the surface exposure of CRT in dying cancer cells, thus reducing anti-MM immune response after bortezomib.

  • Immunogenicity can be restored by combining bortezomib with an autophagy inducer, providing the framework for their clinical translation.

Abstract

Immunogenic cell death (ICD) is a form of cell death by which cancer treatments can induce a clinically relevant antitumor immune response in a broad range of cancers. In multiple myeloma (MM), the proteasome inhibitor bortezomib is an ICD inducer and creates durable therapeutic responses in patients. However, eventual relapse and resistance to bortezomib appear inevitable. Here, by integrating patient transcriptomic data with an analysis of calreticulin (CRT) protein interactors, we found that GABA type A receptor–associated protein (GABARAP) is a key player whose loss prevented tumor cell death from being perceived as immunogenic after bortezomib treatment. GABARAP is located on chromosome 17p, which is commonly deleted in patients with high risk MM. GABARAP deletion impaired the exposure of the eat-me signal CRT on the surface of dying MM cells in vitro and in vivo, thus reducing tumor cell phagocytosis by dendritic cells and the subsequent antitumor T-cell response. Low GABARAP was independently associated with shorter survival in patients with MM and reduced tumor immune infiltration. Mechanistically, we found that GABARAP deletion blocked ICD signaling by decreasing autophagy and altering Golgi apparatus morphology, with consequent defects in the downstream vesicular transport of CRT. Conversely, upregulating autophagy using rapamycin restored Golgi morphology, CRT exposure, and ICD signaling in GABARAPKO cells undergoing bortezomib treatment. Therefore, coupling an ICD inducer, such as bortezomib, with an autophagy inducer, such as rapamycin, may improve patient outcomes in MM, in which low GABARAP in the form of del(17p) is common and leads to worse outcomes.

1.
Sistigu
A
,
Yamazaki
T
,
Vacchelli
E
, et al
.
Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy
.
Nat Med
.
2014
;
20
(
11
):
1301
-
1309
.
2.
Kroemer
G
,
Galluzzi
L
,
Kepp
O
,
Zitvogel
L
.
Immunogenic cell death in cancer therapy
.
Annu Rev Immunol
.
2013
;
31
:
51
-
72
.
3.
Kroemer
G
,
Galassi
C
,
Zitvogel
L
,
Galluzzi
L
.
Immunogenic cell stress and death
.
Nat Immunol
.
2022
;
23
(
4
):
487
-
500
.
4.
Casares
N
,
Pequignot
MO
,
Tesniere
A
, et al
.
Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death
.
J Exp Med
.
2005
;
202
(
12
):
1691
-
1701
.
5.
Goel
S
,
DeCristo
MJ
,
Watt
AC
, et al
.
CDK4/6 inhibition triggers anti-tumour immunity
.
Nature
.
2017
;
548
(
7668
):
471
-
475
.
6.
Sequeira
GR
,
Sahores
A
,
Dalotto-Moreno
T
, et al
.
Enhanced antitumor immunity via endocrine therapy prevents mammary tumor relapse and increases immune checkpoint blockade sensitivity
.
Cancer Res
.
2021
;
81
(
5
):
1375
-
1387
.
7.
Mattarollo
SR
,
Loi
S
,
Duret
H
,
Ma
Y
,
Zitvogel
L
,
Smyth
MJ
.
Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors
.
Cancer Res
.
2011
;
71
(
14
):
4809
-
4820
.
8.
Tesniere
A
,
Schlemmer
F
,
Boige
V
, et al
.
Immunogenic death of colon cancer cells treated with oxaliplatin
.
Oncogene
.
2010
;
29
(
4
):
482
-
491
.
9.
Pozzi
C
,
Cuomo
A
,
Spadoni
I
, et al
.
The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death
.
Nat Med
.
2016
;
22
(
6
):
624
-
631
.
10.
Xie
W
,
Forveille
S
,
Iribarren
K
, et al
.
Lurbinectedin synergizes with immune checkpoint blockade to generate anticancer immunity
.
OncoImmunology
.
2019
;
8
(
11
):
e1656502
.
11.
Liu
P
,
Zhao
L
,
Pol
J
, et al
.
Crizotinib-induced immunogenic cell death in non-small cell lung cancer
.
Nat Commun
.
2019
;
10
(
1
):
1486
.
12.
Petrazzuolo
A
,
Perez-Lanzon
M
,
Martins
I
, et al
.
Pharmacological inhibitors of anaplastic lymphoma kinase (ALK) induce immunogenic cell death through on-target effects
.
Cell Death Dis
.
2021
;
12
(
8
):
713
.
13.
Schiavoni
G
,
Sistigu
A
,
Valentini
M
, et al
.
Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis
.
Cancer Res
.
2011
;
71
(
3
):
768
-
778
.
14.
Wang
Z
,
Chen
J
,
Hu
J
, et al
.
cGAS/STING axis mediates a topoisomerase II inhibitor-induced tumor immunogenicity
.
J Clin Invest
.
2019
;
129
(
11
):
4850
-
4862
.
15.
Tatsuno
K
,
Yamazaki
T
,
Hanlon
D
, et al
.
Extracorporeal photochemotherapy induces bona fide immunogenic cell death
.
Cell Death Dis
.
2019
;
10
(
8
):
578
.
16.
Zappasodi
R
,
Pupa
SM
,
Ghedini
GC
, et al
.
Improved clinical outcome in indolent B-cell lymphoma patients vaccinated with autologous tumor cells experiencing immunogenic death
.
Cancer Res
.
2010
;
70
(
22
):
9062
-
9072
.
17.
Zitvogel
L
,
Kepp
O
,
Kroemer
G
.
Decoding cell death signals in inflammation and immunity
.
Cell
.
2010
;
140
(
6
):
798
-
804
.
18.
Obeid
M
,
Tesniere
A
,
Ghiringhelli
F
, et al
.
Calreticulin exposure dictates the immunogenicity of cancer cell death
.
Nat Med
.
2007
;
13
(
1
):
54
-
61
.
19.
Panaretakis
T
,
Kepp
O
,
Brockmeier
U
, et al
.
Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death
.
EMBO J
.
2009
;
28
(
5
):
578
-
590
.
20.
Gajewski
TF
,
Schreiber
H
,
Fu
YX
.
Innate and adaptive immune cells in the tumor microenvironment
.
Nat Immunol
.
2013
;
14
(
10
):
1014
-
1022
.
21.
Galluzzi
L
,
Vitale
I
,
Aaronson
SA
, et al
.
Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018
.
Cell Death Differ
.
2018
;
25
(
3
):
486
-
541
.
22.
Galluzzi
L
,
Buque
A
,
Kepp
O
,
Zitvogel
L
,
Kroemer
G
.
Immunogenic cell death in cancer and infectious disease
.
Nat Rev Immunol
.
2017
;
17
(
2
):
97
-
111
.
23.
Legrand
AJ
,
Konstantinou
M
,
Goode
EF
,
Meier
P
.
The diversification of cell death and immunity: Memento mori
.
Mol Cell
.
2019
;
76
(
2
):
232
-
242
.
24.
Lin
H
,
Kryczek
I
,
Li
S
, et al
.
Stanniocalcin 1 is a phagocytosis checkpoint driving tumor immune resistance
.
Cancer Cell
.
2021
;
39
(
4
):
480
-
493.e6
.
25.
Vacchelli
E
,
Ma
Y
,
Baracco
EE
, et al
.
Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1
.
Science
.
2015
;
350
(
6263
):
972
-
978
.
26.
Gulla
A
,
Anderson
KC
.
Multiple myeloma: the (r)evolution of current therapy and a glance into future
.
Haematologica
.
2020
;
105
(
10
):
2358
-
2367
.
27.
Sklavenitis-Pistofidis
R
,
Aranha
MP
,
Redd
RA
, et al
.
Immune biomarkers of response to immunotherapy in patients with high-risk smoldering myeloma
.
Cancer Cell
.
2022
;
40
(
11
):
1358
-
1373.e8
.
28.
Yamamoto
L
,
Amodio
N
,
Gulla
A
,
Anderson
KC
.
Harnessing the immune system against multiple myeloma: challenges and opportunities
.
Front Oncol
.
2020
;
10
:
606368
.
29.
Dhodapkar
MV
.
The immune system in multiple myeloma and precursor states: Lessons and implications for immunotherapy and interception
.
Am J Hematol
.
2023
;
98
(
suppl 2
):
S4
-
S12
.
30.
Gulla
A
,
Morelli
E
,
Samur
MK
, et al
.
Bortezomib induces anti-multiple myeloma immune response mediated by cGAS/STING pathway activation
.
Blood Cancer Discov
.
2021
;
2
(
5
):
468
-
483
.
31.
Richardson
PG
,
Sonneveld
P
,
Schuster
M
, et al
.
Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial
.
Blood
.
2007
;
110
(
10
):
3557
-
3560
.
32.
Richardson
PG
,
Sonneveld
P
,
Schuster
MW
, et al
.
Bortezomib or high-dose dexamethasone for relapsed multiple myeloma
.
N Engl J Med
.
2005
;
352
(
24
):
2487
-
2498
.
33.
Johnstone
M
,
Vinaixa
D
,
Turi
M
,
Morelli
E
,
Anderson
KC
,
Gulla
A
.
Promises and challenges of immunogenic chemotherapy in multiple myeloma
.
Cells
.
2022
;
11
(
16
):
2519
.
34.
Spisek
R
,
Charalambous
A
,
Mazumder
A
,
Vesole
DH
,
Jagannath
S
,
Dhodapkar
MV
.
Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications
.
Blood
.
2007
;
109
(
11
):
4839
-
4845
.
35.
Schaaf
MB
,
Keulers
TG
,
Vooijs
MA
,
Rouschop
KM
.
LC3/GABARAP family proteins: autophagy-(un)related functions
.
FASEB J
.
2016
;
30
(
12
):
3961
-
3978
.
36.
Joachim
J
,
Jefferies
HB
,
Razi
M
, et al
.
Activation of ULK kinase and autophagy by GABARAP trafficking from the centrosome is regulated by WAC and GM130
.
Mol Cell
.
2015
;
60
(
6
):
899
-
913
.
37.
Li
Y
,
Wang
LX
,
Yang
G
,
Hao
F
,
Urba
WJ
,
Hu
HM
.
Efficient cross-presentation depends on autophagy in tumor cells
.
Cancer Res
.
2008
;
68
(
17
):
6889
-
6895
.
38.
Michaud
M
,
Martins
I
,
Sukkurwala
AQ
, et al
.
Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice
.
Science
.
2011
;
334
(
6062
):
1573
-
1577
.
39.
Morelli
E
,
Fulciniti
M
,
Samur
MK
, et al
.
A MIR17HG-derived long noncoding RNA provides an essential chromatin scaffold for protein interaction and myeloma growth
.
Blood
.
2023
;
141
(
4
):
391
-
405
.
40.
Branon
TC
,
Bosch
JA
,
Sanchez
AD
, et al
.
Efficient proximity labeling in living cells and organisms with TurboID
.
Nat Biotechnol
.
2018
;
36
(
9
):
880
-
887
.
41.
Axelrod
HD
,
Valkenburg
KC
,
Amend
SR
, et al
.
AXL is a putative tumor suppressor and dormancy regulator in prostate cancer
.
Mol Cancer Res
.
2019
;
17
(
2
):
356
-
369
.
42.
Samur
MK
,
Minvielle
S
,
Gulla
A
, et al
.
Long intergenic non-coding RNAs have an independent impact on survival in multiple myeloma
.
Leukemia
.
2018
;
32
(
12
):
2626
-
2635
.
43.
Zavidij
O
,
Haradhvala
NJ
,
Mouhieddine
TH
, et al
.
Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma
.
Nat Cancer
.
2020
;
1
(
5
):
493
-
506
.
44.
Tirier
SM
,
Mallm
JP
,
Steiger
S
, et al
.
Subclone-specific microenvironmental impact and drug response in refractory multiple myeloma revealed by single-cell transcriptomics
.
Nat Commun
.
2021
;
12
(
1
):
6960
.
45.
Bailur
JK
,
McCachren
SS
,
Doxie
DB
, et al
.
Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy
.
JCI Insight
.
2019
;
5
(
11
):
e127807
.
46.
Mulligan
G
,
Mitsiades
C
,
Bryant
B
, et al
.
Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib
.
Blood
.
2007
;
109
(
8
):
3177
-
3188
.
47.
Corre
J
,
Perrot
A
,
Caillot
D
, et al
.
del(17p) without TP53 mutation confers a poor prognosis in intensively treated newly diagnosed patients with multiple myeloma
.
Blood
.
2021
;
137
(
9
):
1192
-
1195
.
48.
Bonneville
R
,
Krook
MA
,
Kautto
EA
, et al
.
Landscape of microsatellite instability across 39 cancer types
.
JCO Precis Oncol
.
2017
;
2017
(
1
):
1
-
15
.
49.
Uhlen
M
,
Zhang
C
,
Lee
S
, et al
.
A pathology atlas of the human cancer transcriptome
.
Science
.
2017
;
357
(
6352
):
eaan2507
.
50.
Cerami
E
,
Gao
J
,
Dogrusoz
U
, et al
.
The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
.
Cancer Discov
.
2012
;
2
(
5
):
401
-
404
.
51.
Gao
J
,
Aksoy
BA
,
Dogrusoz
U
, et al
.
Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal
.
Sci Signal
.
2013
;
6
(
269
):
pl1
.
52.
Yang
Y
,
Ma
F
,
Liu
Z
, et al
.
The ER-localized Ca(2+)-binding protein calreticulin couples ER stress to autophagy by associating with microtubule-associated protein 1A/1B light chain 3
.
J Biol Chem
.
2019
;
294
(
3
):
772
-
782
.
53.
Jarauta
V
,
Jaime
P
,
Gonzalo
O
, et al
.
Inhibition of autophagy with chloroquine potentiates carfilzomib-induced apoptosis in myeloma cells in vitro and in vivo
.
Cancer Lett
.
2016
;
382
(
1
):
1
-
10
.
54.
Matsushita
M
,
Kashiwazaki
S
,
Kamiko
S
, et al
.
Immunomodulatory effect of proteasome inhibitors via the induction of immunogenic cell death in myeloma cells
.
Pharmaceuticals (Basel)
.
2023
;
16
(
10
):
1367
.
55.
Jumper
J
,
Evans
R
,
Pritzel
A
, et al
.
Highly accurate protein structure prediction with AlphaFold
.
Nature
.
2021
;
596
(
7873
):
583
-
589
.
56.
Varadi
M
,
Anyango
S
,
Deshpande
M
, et al
.
AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models
.
Nucleic Acids Res
.
2022
;
50
(
D1
):
D439
-
D444
.
57.
Pettersen
EF
,
Goddard
TD
,
Huang
CC
, et al
.
UCSF ChimeraX: structure visualization for researchers, educators, and developers
.
Protein Sci
.
2021
;
30
(
1
):
70
-
82
.
58.
Benyair
R
,
Eisenberg-Lerner
A
,
Merbl
Y
.
Maintaining Golgi homeostasis: a balancing act of two proteolytic pathways
.
Cells
.
2022
;
11
(
5
):
780
.
59.
Stromberg
T
,
Dimberg
A
,
Hammarberg
A
, et al
.
Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone
.
Blood
.
2004
;
103
(
8
):
3138
-
3147
.
60.
Lowery
FJ
,
Krishna
S
,
Yossef
R
, et al
.
Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers
.
Science
.
2022
;
375
(
6583
):
877
-
884
.
61.
Fucikova
J
,
Truxova
I
,
Hensler
M
, et al
.
Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients
.
Blood
.
2016
;
128
(
26
):
3113
-
3124
.
62.
Truxova
I
,
Kasikova
L
,
Salek
C
, et al
.
Calreticulin exposure on malignant blasts correlates with improved natural killer cell-mediated cytotoxicity in acute myeloid leukemia patients
.
Haematologica
.
2020
;
105
(
7
):
1868
-
1878
.
63.
Fucikova
J
,
Becht
E
,
Iribarren
K
, et al
.
Calreticulin expression in human non-small cell lung cancers correlates with increased accumulation of antitumor immune cells and favorable prognosis
.
Cancer Res
.
2016
;
76
(
7
):
1746
-
1756
.
64.
Kasikova
L
,
Hensler
M
,
Truxova
I
, et al
.
Calreticulin exposure correlates with robust adaptive antitumor immunity and favorable prognosis in ovarian carcinoma patients
.
J Immunother Cancer
.
2019
;
7
(
1
):
312
.
65.
Song
X
,
Zhou
Z
,
Li
H
, et al
.
Pharmacologic suppression of B7-H4 glycosylation restores antitumor immunity in immune-cold breast cancers
.
Cancer Discov
.
2020
;
10
(
12
):
1872
-
1893
.
66.
Cai
J
,
Hu
Y
,
Ye
Z
, et al
.
Immunogenic cell death-related risk signature predicts prognosis and characterizes the tumour microenvironment in lower-grade glioma
.
Front Immunol
.
2022
;
13
:
1011757
.
67.
Sun
Z
,
Jiang
H
,
Yan
T
,
Deng
G
,
Chen
Q
.
Identification of immunogenic cell death-related signature for glioma to predict survival and response to immunotherapy
.
Cancers (Basel)
.
2022
;
14
(
22
):
5665
.
68.
Pan
F
,
Luo
Y
,
Wang
L
, et al
.
Identification of immunogenic cell death-associated subtypes and characterization of the tumor microenvironment in endometrial cancer
.
J Gene Med
.
2023
;
25
(
7
):
e3495
.
69.
Di Somma
S
,
Iannuzzi
CA
,
Passaro
C
, et al
.
The oncolytic virus dl922-947 triggers immunogenic cell death in mesothelioma and reduces xenograft growth
.
Front Oncol
.
2019
;
9
:
564
.
70.
Ye
J
,
Mills
BN
,
Zhao
T
, et al
.
Assessing the magnitude of immunogenic cell death following chemotherapy and irradiation reveals a new strategy to treat pancreatic cancer
.
Cancer Immunol Res
.
2020
;
8
(
1
):
94
-
107
.
71.
Lu
J
,
Liu
X
,
Liao
YP
, et al
.
Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression
.
Nat Commun
.
2017
;
8
(
1
):
1811
.
72.
Aaltonen
LA
,
Abascal
F
,
Abeshouse
A
, et al
.
Pan-cancer analysis of whole genomes
.
Nature
.
2020
;
578
(
7793
):
82
-
93
.
73.
Li
Y
,
Roberts
ND
,
Wala
JA
, et al
.
Patterns of somatic structural variation in human cancer genomes
.
Nature
.
2020
;
578
(
7793
):
112
-
121
.
74.
Liu
Y
,
Chen
C
,
Xu
Z
, et al
.
Deletions linked to TP53 loss drive cancer through p53-independent mechanisms
.
Nature
.
2016
;
531
(
7595
):
471
-
475
.
75.
Avet-Loiseau
H
,
Leleu
X
,
Roussel
M
, et al
.
Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p)
.
J Clin Oncol
.
2010
;
28
(
30
):
4630
-
4634
.
76.
Chen
M
,
Chen
X
,
Li
S
, et al
.
An epigenetic mechanism underlying chromosome 17p deletion-driven tumorigenesis
.
Cancer Discov
.
2021
;
11
(
1
):
194
-
207
.
77.
Joachim
J
,
Razi
M
,
Judith
D
, et al
.
Centriolar satellites control GABARAP ubiquitination and GABARAP-mediated autophagy
.
Curr Biol
.
2017
;
27
(
14
):
2123
-
2136.e7
.
78.
Sanwald
JL
,
Dobner
J
,
Simons
IM
, et al
.
Lack of GABARAP-type proteins is accompanied by altered Golgi morphology and surfaceome composition
.
Int J Mol Sci
.
2020
;
22
(
1
):
85
.
79.
Farber-Katz
SE
,
Dippold
HC
,
Buschman
MD
, et al
.
DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3
.
Cell
.
2014
;
156
(
3
):
413
-
427
.
80.
Petrosyan
A
.
Onco-Golgi: is fragmentation a gate to cancer progression?
.
Biochem Mol Biol J
.
2015
;
1
(
1
):
16
.
81.
Thielmann
Y
,
Weiergraber
OH
,
Mohrluder
J
,
Willbold
D
.
Structural framework of the GABARAP-calreticulin interface--implications for substrate binding to endoplasmic reticulum chaperones
.
FEBS J
.
2009
;
276
(
4
):
1140
-
1152
.
82.
Mohrluder
J
,
Stangler
T
,
Hoffmann
Y
,
Wiesehan
K
,
Mataruga
A
,
Willbold
D
.
Identification of calreticulin as a ligand of GABARAP by phage display screening of a peptide library
.
FEBS J
.
2007
;
274
(
21
):
5543
-
5555
.
You do not currently have access to this content.
Sign in via your Institution