• RNA editing enzyme ADAR2, but not ADAR1 and ADAR3, was specifically downregulated in CBF AMLs.

  • The RNA editing capability of ADAR2 is essential for its suppression of leukemogenesis in an additional exon 9a–driven AML mouse model.

Adenosine-to-inosine RNA editing, which is catalyzed by adenosine deaminases acting on RNA (ADAR) family of enzymes, ADAR1 and ADAR2, has been shown to contribute to multiple cancers. However, other than the chronic myeloid leukemia blast crisis, relatively little is known about its role in other types of hematological malignancies. Here, we found that ADAR2, but not ADAR1 and ADAR3, was specifically downregulated in the core-binding factor (CBF) acute myeloid leukemia (AML) with t(8;21) or inv(16) translocations. In t(8;21) AML, RUNX1-driven transcription of ADAR2 was repressed by the RUNX1-ETO additional exon 9a fusion protein in a dominant-negative manner. Further functional studies confirmed that ADAR2 could suppress leukemogenesis specifically in t(8;21) and inv16 AML cells dependent on its RNA editing capability. Expression of 2 exemplary ADAR2-regulated RNA editing targets coatomer subunit α and component of oligomeric Golgi complex 3 inhibits the clonogenic growth of human t(8;21) AML cells. Our findings support a hitherto, unappreciated mechanism leading to ADAR2 dysregulation in CBF AML and highlight the functional relevance of loss of ADAR2-mediated RNA editing to CBF AML.

1.
Nishikura
K
.
Functions and regulation of RNA editing by ADAR deaminases
.
Annu Rev Biochem
.
2010
;
79
:
321
-
349
.
2.
Keegan
LP
,
Leroy
A
,
Sproul
D
,
O’Connell
MA
.
Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes
.
Genome Biol
.
2004
;
5
(
2
):
209
.
3.
Melcher
T
,
Maas
S
,
Herb
A
,
Sprengel
R
,
Higuchi
M
,
Seeburg
PH
.
RED2, a brain-specific member of the RNA-specific adenosine deaminase family
.
J Biol Chem
.
1996
;
271
(
50
):
31795
-
31798
.
4.
Morse
DP
,
Aruscavage
PJ
,
Bass
BL
.
RNA hairpins in noncoding regions of human brain and Caenorhabditis elegans mRNA are edited by adenosine deaminases that act on RNA
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
12
):
7906
-
7911
.
5.
Fumagalli
D
,
Gacquer
D
,
Rothe
F
, et al
.
Principles governing A-to-I RNA editing in the breast cancer transcriptome
.
Cell Rep
.
2015
;
13
(
2
):
277
-
289
.
6.
Chan
THM
,
Lin
CH
,
Qi
L
, et al
.
A disrupted RNA editing balance mediated by ADARs (adenosine deaminases that act on RNA) in human hepatocellular carcinoma
.
Gut
.
2014
;
63
(
5
):
832
-
843
.
7.
Chan
THM
,
Qamra
A
,
Tan
KT
, et al
.
ADAR-mediated RNA editing predicts progression and prognosis of gastric cancer
.
Gastroenterology
.
2016
;
151
(
4
):
637
-
650.e10
.
8.
Chen
L
,
Li
Y
,
Lin
CH
, et al
.
Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma
.
Nat Med
.
2013
;
19
(
2
):
209
-
216
.
9.
Han
L
,
Diao
L
,
Yu
S
, et al
.
The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers
.
Cancer Cell
.
2015
;
28
(
4
):
515
-
528
.
10.
Han
SW
,
Kim
HP
,
Shin
JY
, et al
.
RNA editing in RHOQ promotes invasion potential in colorectal cancer
.
J Exp Med
.
2014
;
211
(
4
):
613
-
621
.
11.
Tang
SJ
,
Shen
H
,
An
O
, et al
.
Cis- and trans-regulations of pre-mRNA splicing by RNA editing enzymes influence cancer development
.
Nat Commun
.
2020
;
11
(
1
):
799
.
12.
Martinez
HD
,
Jasavala
RJ
,
Hinkson
I
, et al
.
RNA editing of androgen receptor gene transcripts in prostate cancer cells
.
J Biol Chem
.
2008
;
283
(
44
):
29938
-
29949
.
13.
Galeano
F
,
Rossetti
C
,
Tomaselli
S
, et al
.
ADAR2-editing activity inhibits glioblastoma growth through the modulation of the CDC14B/Skp2/p21/p27 axis
.
Oncogene
.
2013
;
32
(
8
):
998
-
1009
.
14.
Hong
H
,
Lin
JS
,
Chen
L
.
Regulatory factors governing adenosine-to-inosine (A-to-I) RNA editing
.
Biosci Rep
.
2015
;
35
(
2
):
e00182
.
15.
Chen
YB
,
Liao
XY
,
Zhang
JB
, et al
.
ADAR2 functions as a tumor suppressor via editing IGFBP7 in esophageal squamous cell carcinoma
.
Int J Oncol
.
2017
;
50
(
2
):
622
-
630
.
16.
Fritzell
K
,
Xu
LD
,
Lagergren
J
,
Ohman
M
.
ADARs and editing: the role of A-to-I RNA modification in cancer progression
.
Semin Cell Dev Biol
.
2018
;
79
:
123
-
130
.
17.
Beghini
A
,
Ripamonti
CB
,
Peterlongo
P
, et al
.
RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia
.
Hum Mol Genet
.
2000
;
9
(
15
):
2297
-
2304
.
18.
Maas
S
,
Patt
S
,
Schrey
M
,
Rich
A
.
Underediting of glutamate receptor GluR-B mRNA in malignant gliomas
.
Proc Natl Acad Sci U S A
.
2001
;
98
(
25
):
14687
-
14692
.
19.
Paz-Yaacov
N
,
Bazak
L
,
Buchumenski
I
, et al
.
Elevated RNA editing activity is a major contributor to transcriptomic diversity in tumors
.
Cell Rep
.
2015
;
13
(
2
):
267
-
276
.
20.
Tenen
DG
.
Disruption of differentiation in human cancer: AML shows the way
.
Nat Rev Cancer
.
2003
;
3
(
2
):
89
-
101
.
21.
Tenen
DG
,
Hromas
R
,
Licht
JD
,
Zhang
DE
.
Transcription factors, normal myeloid development, and leukemia
.
Blood
.
1997
;
90
(
2
):
489
-
519
.
22.
Lazzari
E
,
Mondala
PK
,
Santos
ND
, et al
.
Alu-dependent RNA editing of GLI1 promotes malignant regeneration in multiple myeloma
.
Nat Commun
.
2017
;
8
(
1
):
1922
.
23.
Teoh
PJ
,
An
O
,
Chung
TH
, et al
.
Aberrant hyperediting of the myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis
.
Blood
.
2018
;
132
(
12
):
1304
-
1317
.
24.
Jiang
Q
,
Isquith
J
,
Zipeto
MA
, et al
.
Hyper-editing of cell-cycle regulatory and tumor suppressor RNA promotes malignant progenitor propagation
.
Cancer Cell
.
2019
;
35
(
1
):
81
-
94.e7
.
25.
Jiang
Q
,
Crews
LA
,
Barrett
CL
, et al
.
ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
3
):
1041
-
1046
.
26.
Zipeto
MA
,
Court
AC
,
Sadarangani
A
, et al
.
ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis
.
Cell Stem Cell
.
2016
;
19
(
2
):
177
-
191
.
27.
Meyers
S
,
Downing
JR
,
Hiebert
SW
.
Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions
.
Mol Cell Biol
.
1993
;
13
(
10
):
6336
-
6345
.
28.
Zhang
DE
,
Fujioka
K
,
Hetherington
CJ
, et al
.
Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1)
.
Mol Cell Biol
.
1994
;
14
(
12
):
8085
-
8095
.
29.
Zhang
DE
,
Hetherington
CJ
,
Meyers
S
, et al
.
CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter
.
Mol Cell Biol
.
1996
;
16
(
3
):
1231
-
1240
.
30.
Klampfer
L
,
Zhang
J
,
Zelenetz
AO
,
Uchida
H
,
Nimer
SD
.
The AML1/ETO fusion protein activates transcription of BCL-2
.
Proc Natl Acad Sci U S A
.
1996
;
93
(
24
):
14059
-
14064
.
31.
Pabst
T
,
Mueller
BU
,
Harakawa
N
, et al
.
AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia
.
Nat Med
.
2001
;
7
(
4
):
444
-
451
.
32.
Yergeau
DA
,
Hetherington
CJ
,
Wang
Q
, et al
.
Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene
.
Nat Genet
.
1997
;
15
(
3
):
303
-
306
.
33.
Rhoades
KL
,
Hetherington
CJ
,
Harakawa
N
, et al
.
Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model
.
Blood
.
2000
;
96
(
6
):
2108
-
2115
.
34.
Burel
SA
,
Harakawa
N
,
Zhou
L
,
Pabst
T
,
Tenen
DG
,
Zhang
DE
.
Dichotomy of AML1-ETO functions: growth arrest versus block of differentiation
.
Mol Cell Biol
.
2001
;
21
(
16
):
5577
-
5590
.
35.
Rhoades
KL
,
Hetherington
CJ
,
Rowley
JD
, et al
.
Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis
.
Proc Natl Acad Sci U S A
.
1996
;
93
(
21
):
11895
-
11900
.
36.
Kuchenbauer
F
,
Schnittger
S
,
Look
T
, et al
.
Identification of additional cytogenetic and molecular genetic abnormalities in acute myeloid leukaemia with t(8;21)/AML1-ETO
.
Br J Haematol
.
2006
;
134
(
6
):
616
-
619
.
37.
Elsasser
A
,
Franzen
M
,
Kohlmann
A
, et al
.
The fusion protein AML1-ETO in acute myeloid leukemia with translocation t(8;21) induces c-jun protein expression via the proximal AP-1 site of the c-jun promoter in an indirect, JNK-dependent manner
.
Oncogene
.
2003
;
22
(
36
):
5646
-
5657
.
38.
Staber
PB
,
Zhang
P
,
Ye
M
, et al
.
The Runx-PU.1 pathway preserves normal and AML/ETO9a leukemic stem cells
.
Blood
.
2014
;
124
(
15
):
2391
-
2399
.
39.
Trinh
BQ
,
Ummarino
S
,
Zhang
Y
, et al
.
Myeloid lncRNA LOUP mediates opposing regulatory effects of RUNX1 and RUNX1-ETO in t(8;21) AML
.
Blood
.
2021
;
138
(
15
):
1331
-
1344
.
40.
Higuchi
M
,
O’Brien
D
,
Kumaravelu
P
,
Lenny
N
,
Yeoh
EJ
,
Downing
JR
.
Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia
.
Cancer Cell
.
2002
;
1
(
1
):
63
-
74
.
41.
Schessl
C
,
Rawat
VPS
,
Cusan
M
, et al
.
The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice
.
J Clin Invest
.
2005
;
115
(
8
):
2159
-
2168
.
42.
Valk
PJM
,
Verhaak
RGW
,
Beijen
MA
, et al
.
Prognostically useful gene-expression profiles in acute myeloid leukemia
.
N Engl J Med
.
2004
;
350
(
16
):
1617
-
1628
.
43.
Weinstein
JN
,
Collisson
EA
,
Mills
GB
, et al;
Cancer Genome Atlas Research Network
.
The Cancer Genome Atlas pan-cancer analysis project
.
Nat Genet
.
2013
;
45
(
10
):
1113
-
1120
.
44.
Gelmetti
V
,
Zhang
J
,
Fanelli
M
,
Minucci
S
,
Pelicci
PG
,
Lazar
MA
.
Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO
.
Mol Cell Biol
.
1998
;
18
(
12
):
7185
-
7191
.
45.
Lutterbach
B
,
Westendorf
JJ
,
Linggi
B
, et al
.
ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors
.
Mol Cell Biol
.
1998
;
18
(
12
):
7176
-
7184
.
46.
Wang
J
,
Hoshino
T
,
Redner
RL
,
Kajigaya
S
,
Liu
JM
.
ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex
.
Proc Natl Acad Sci U S A
.
1998
;
95
(
18
):
10860
-
10865
.
47.
Amann
JM
,
Nip
J
,
Strom
DK
, et al
.
ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain
.
Mol Cell Biol
.
2001
;
21
(
19
):
6470
-
6483
.
48.
Zhang
J
,
Hug
BA
,
Huang
EY
, et al
.
Oligomerization of ETO is obligatory for corepressor interaction
.
Mol Cell Biol
.
2001
;
21
(
1
):
156
-
163
.
49.
Hiebert
SW
,
Lutterbach
B
,
Amann
J
.
Role of co-repressors in transcriptional repression mediated by the t(8;21), t(16;21), t(12;21), and inv(16) fusion proteins
.
Curr Opin Hematol
.
2001
;
8
(
4
):
197
-
200
.
50.
Hildebrand
D
,
Tiefenbach
J
,
Heinzel
T
,
Grez
M
,
Maurer
AB
.
Multiple regions of ETO cooperate in transcriptional repression
.
J Biol Chem
.
2001
;
276
(
13
):
9889
-
9895
.
51.
Ptasinska
A
,
Assi
SA
,
Martinez-Soria
N
, et al
.
Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal
.
Cell Rep
.
2014
;
8
(
6
):
1974
-
1988
.
52.
Regha
K
,
Assi
SA
,
Tsoulaki
O
,
Gilmour
J
,
Lacaud
G
,
Bonifer
C
.
Developmental-stage-dependent transcriptional response to leukaemic oncogene expression
.
Nat Commun
.
2015
;
6
(
1
):
7203
-
7216
.
53.
Levanon
D
,
Groner
Y
.
Structure and regulated expression of mammalian RUNX genes
.
Oncogene
.
2004
;
23
(
24
):
4211
-
4219
.
54.
Ptasinska
A
,
Assi
SA
,
Mannari
D
, et al
.
Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding
.
Leukemia
.
2012
;
26
(
8
):
1829
-
1841
.
55.
Wu
M
,
Li
C
,
Zhu
G
, et al
.
Deletion of core-binding factor beta (Cbfbeta) in mesenchymal progenitor cells provides new insights into Cbfbeta/Runxs complex function in cartilage and bone development
.
Bone
.
2014
;
65
:
49
-
59
.
56.
Johnson
DT
,
Davis
AG
,
Zhou
JH
,
Ball
ED
,
Zhang
DE
.
MicroRNA let-7b downregulates AML1-ETO oncogene expression in t(8;21) AML by targeting its 3’UTR
.
Exp Hematol Oncol
.
2021
;
10
(
1
):
8
.
57.
Miao
YQ
,
Chen
ZX
,
He
J
, et al
.
Expression of AML1/ETO9a isoform in acute myeloid leukemia-M2 subtype
.
Zhonghua Xue Ye Xue Za Zhi
.
2007
;
28
(
1
):
27
-
29
.
58.
Yan
M
,
Kanbe
E
,
Peterson
LF
, et al
.
A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis
.
Nat Med
.
2006
;
12
(
8
):
945
-
949
.
59.
Lai
F
,
Drakas
R
,
Nishikura
K
.
Mutagenic analysis of double-stranded RNA adenosine deaminase, a candidate enzyme for RNA editing of glutamate-gated ion channel transcripts
.
J Biol Chem
.
1995
;
270
(
29
):
17098
-
17105
.
60.
Valente
L
,
Nishikura
K
.
RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions
.
J Biol Chem
.
2007
;
282
(
22
):
16054
-
16061
.
61.
Yang
W
,
Chendrimada
TP
,
Wang
Q
, et al
.
Modulation of microRNA processing and expression through RNA editing by ADAR deaminases
.
Nat Struct Mol Biol
.
2006
;
13
(
1
):
13
-
21
.
62.
Kawahara
Y
,
Zinshteyn
B
,
Sethupathy
P
,
Iizasa
H
,
Hatzigeorgiou
AG
,
Nishikura
K
.
Redirection of silencing targets by adenosine-to-inosine editing of miRNAs
.
Science
.
2007
;
315
(
5815
):
1137
-
1140
.
63.
Morita
Y
,
Shibutani
T
,
Nakanishi
N
,
Nishikura
K
,
Iwai
S
,
Kuraoka
I
.
Human endonuclease V is a ribonuclease specific for inosine-containing RNA
.
Nat Commun
.
2013
;
4
(
1
):
2273
-
2284
.
64.
Zhang
Z
,
Carmichael
GG
.
The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs
.
Cell
.
2001
;
106
(
4
):
465
-
475
.
65.
Ponting
CP
.
Biological function in the twilight zone of sequence conservation
.
BMC Biol
.
2017
;
15
(
1
):
71
.
66.
Ungar
D
,
Oka
T
,
Brittle
EE
, et al
.
Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function
.
J Cell Biol
.
2002
;
157
(
3
):
405
-
415
.
67.
Duden
R
.
ER-to-Golgi transport: COP I and COP II function (review)
.
Mol Membr Biol
.
2003
;
20
(
3
):
197
-
207
.
68.
Song
Y
,
An
O
,
Ren
X
, et al
.
RNA editing mediates the functional switch of COPA in a novel mechanism of hepatocarcinogenesis
.
J Hepatol
.
2021
;
74
(
1
):
135
-
147
.
69.
Monteleone
LR
,
Matthews
MM
,
Palumbo
CM
, et al
.
A bump-hole approach for directed RNA editing
.
Cell Chem Biol
.
2019
;
26
(
2
):
269
-
277.e5
.
70.
Peng
X
,
Xu
X
,
Wang
Y
, et al
.
A-to-I RNA editing contributes to proteomic diversity in cancer
.
Cancer Cell
.
2018
;
33
(
5
):
817
-
828.e7
.
71.
Paupard
MC
,
O’Connell
MA
,
Gerber
AP
,
Zukin
RS
.
Patterns of developmental expression of the RNA editing enzyme rADAR2
.
Neuroscience
.
2000
;
95
(
3
):
869
-
879
.
72.
Sansam
CL
,
Wells
KS
,
Emeson
RB
.
Modulation of RNA editing by functional nucleolar sequestration of ADAR2
.
Proc Natl Acad Sci U S A
.
2003
;
100
(
24
):
14018
-
14023
.
73.
Shigeyasu
K
,
Okugawa
Y
,
Toden
S
, et al
.
AZIN1 RNA editing confers cancer stemness and enhances oncogenic potential in colorectal cancer
.
JCI Insight
.
2018
;
3
(
12
):
e99976
.
74.
Qi
L
,
Chan
THM
,
Tenen
DG
,
Chen
L
.
RNA editome imbalance in hepatocellular carcinoma
.
Cancer Res
.
2014
;
74
(
5
):
1301
-
1306
.
75.
An
O
,
Song
Y
,
Ke
X
, et al
.
“3G” trial: an RNA editing signature to guide gastric cancer chemotherapy
.
Cancer Res
.
2021
;
81
(
10
):
2788
-
2798
.
76.
Shen
H
,
An
O
,
Ren
X
, et al
.
ADARs act as potent regulators of circular transcriptome in cancer
.
Nat Commun
.
2022
;
13
(
1
):
1508
.
77.
Shelton
PM
,
Duran
A
,
Nakanishi
Y
, et al
.
The secretion of miR-200s by a PKCzeta/ADAR2 signaling axis promotes liver metastasis in colorectal cancer
.
Cell Rep
.
2018
;
23
(
4
):
1178
-
1191
.
78.
Li
Y
,
Chen
L
,
Chan
THM
,
Guan
XY
.
Hepatocellular carcinoma: transcriptome diversity regulated by RNA editing
.
Int J Biochem Cell Biol
.
2013
;
45
(
8
):
1843
-
1848
.
79.
Han
J
,
An
O
,
Hong
H
, et al
.
Suppression of adenosine-to-inosine (A-to-I) RNA editome by death associated protein 3 (DAP3) promotes cancer progression
.
Sci Adv
.
2020
;
6
(
25
):
eaba5136
.
80.
Hong
H
,
An
O
,
Chan
THM
, et al
.
Bidirectional regulation of adenosine-to-inosine (A-to-I) RNA editing by DEAH box helicase 9 (DHX9) in cancer
.
Nucleic Acids Res
.
2018
;
46
(
15
):
7953
-
7969
.
81.
Seeburg
PH
,
Higuchi
M
,
Sprengel
R
.
RNA editing of brain glutamate receptor channels: mechanism and physiology
.
Brain Res Brain Res Rev
.
1998
;
26
(
2-3
):
217
-
229
.
82.
Maas
S
,
Gommans
WM
.
Novel exon of mammalian ADAR2 extends open reading frame
.
PLoS One
.
2009
;
4
(
1
):
e4225
.
83.
Holmes
AP
,
Wood
SH
,
Merry
BJ
,
de Magalhaes
JP
.
A-to-I RNA editing does not change with age in the healthy male rat brain
.
Biogerontology
.
2013
;
14
(
4
):
395
-
400
.
84.
Pinto
Y
,
Cohen
HY
,
Levanon
EY
.
Mammalian conserved ADAR targets comprise only a small fragment of the human editosome
.
Genome Biol
.
2014
;
15
(
1
):
R5
.
85.
Qi
L
,
Song
Y
,
Chan
THM
, et al
.
An RNA editing/dsRNA binding-independent gene regulatory mechanism of ADARs and its clinical implication in cancer
.
Nucleic Acids Res
.
2017
;
45
(
18
):
10436
-
10451
.
86.
Li
Z
,
Weng
H
,
Su
R
, et al
.
FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase
.
Cancer Cell
.
2017
;
31
(
1
):
127
-
141
.
87.
Shen
C
,
Sheng
Y
,
Zhu
AC
, et al
.
RNA demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia
.
Cell Stem Cell
.
2020
;
27
(
1
):
64
-
80.e9
.
88.
Calvanese
V
,
Nguyen
AT
,
Bolan
TJ
, et al
.
MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment
.
Nature
.
2019
;
576
(
7786
):
281
-
286
.
89.
Paris
J
,
Morgan
M
,
Campos
J
, et al
.
Targeting the RNA m(6)A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia
.
Cell Stem Cell
.
2019
;
25
(
1
):
137
-
148.e6
.
90.
Wang
H
,
Zuo
H
,
Liu
J
, et al
.
Loss of YTHDF2-mediated m(6)A-dependent mRNA clearance facilitates hematopoietic stem cell regeneration
.
Cell Res
.
2018
;
28
(
10
):
1035
-
1038
.
91.
Weng
H
,
Huang
H
,
Wu
H
, et al
.
METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m(6)A modification
.
Cell Stem Cell
.
2018
;
22
(
2
):
191
-
205.e9
.
92.
Su
R
,
Dong
L
,
Li
C
, et al
.
R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling
.
Cell
.
2018
;
172
(
1-2
):
90
-
105.e23
.
93.
Zhang
C
,
Chen
Y
,
Sun
B
, et al
.
m(6 A modulates haematopoietic stem and progenitor cell specification
.
Nature
.
2017
;
549
(
7671
):
273
-
276
.
94.
Vu
LP
,
Pickering
BF
,
Cheng
Y
, et al
.
The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells
.
Nat Med
.
2017
;
23
(
11
):
1369
-
1376
.
95.
Rueter
SM
,
Dawson
TR
,
Emeson
RB
.
Regulation of alternative splicing by RNA editing
.
Nature
.
1999
;
399
(
6731
):
75
-
80
.
96.
Qin
YR
,
Qiao
JJ
,
Chan
THM
, et al
.
Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma
.
Cancer Res
.
2014
;
74
(
3
):
840
-
851
.
97.
Cesarini
V
,
Silvestris
DA
,
Tassinari
V
, et al
.
ADAR2/miR-589-3p axis controls glioblastoma cell migration/invasion
.
Nucleic Acids Res
.
2018
;
46
(
4
):
2045
-
2059
.
98.
Li
Z
,
Tian
Y
,
Tian
N
, et al
.
Aberrant alternative splicing pattern of ADAR2 downregulates adenosine-to-inosine editing in glioma
.
Oncol Rep
.
2015
;
33
(
6
):
2845
-
2852
.
99.
Paul
D
,
Sinha
AN
,
Ray
A
, et al
.
A-to-I editing in human miRNAs is enriched in seed sequence, influenced by sequence contexts and significantly hypoedited in glioblastoma multiforme
.
Sci Rep
.
2017
;
7
(
1
):
2466
.
100.
Adya
N
,
Stacy
T
,
Speck
NA
,
Liu
PP
.
The leukemic protein core binding factor beta (CBFbeta)-smooth-muscle myosin heavy chain sequesters CBFalpha2 into cytoskeletal filaments and aggregates
.
Mol Cell Biol
.
1998
;
18
(
12
):
7432
-
7443
.
101.
Huang
G
,
Shigesada
K
,
Wee
HJ
,
Liu
PP
,
Osato
M
,
Ito
Y
.
Molecular basis for a dominant inactivation of RUNX1/AML1 by the leukemogenic inversion 16 chimera
.
Blood
.
2004
;
103
(
8
):
3200
-
3207
.
102.
Kanno
Y
,
Kanno
T
,
Sakakura
C
,
Bae
SC
,
Ito
Y
.
Cytoplasmic sequestration of the polyomavirus enhancer binding protein 2 (PEBP2)/core binding factor alpha (CBFalpha) subunit by the leukemia-related PEBP2/CBFbeta-SMMHC fusion protein inhibits PEBP2/CBF-mediated transactivation
.
Mol Cell Biol
.
1998
;
18
(
7
):
4252
-
4261
.
103.
Wijmenga
C
,
Gregory
PE
,
Hajra
A
, et al
.
Core binding factor beta-smooth muscle myosin heavy chain chimeric protein involved in acute myeloid leukemia forms unusual nuclear rod-like structures in transformed NIH 3T3 cells
.
Proc Natl Acad Sci U S A
.
1996
;
93
(
4
):
1630
-
1635
.
104.
Zhou
Q
,
Yu
M
,
Tirado-Magallanes
R
, et al
.
ZNF143 mediates CTCF-bound promoter-enhancer loops required for murine hematopoietic stem and progenitor cell function
.
Nat Commun
.
2021
;
12
(
1
):
43
.
105.
Numata
A
,
Kwok
HS
,
Zhou
QL
, et al
.
Lysine acetyltransferase Tip60 is required for hematopoietic stem cell maintenance
.
Blood
.
2020
;
136
(
15
):
1735
-
1747
.
106.
Wang
J
,
Li
Y
,
Wang
P
, et al
.
Leukemogenic chromatin alterations promote AML leukemia stem cells via a KDM4C-ALKBH5-AXL signaling axis
.
Cell Stem Cell
.
2020
;
27
(
1
):
81
-
97.e8
.
You do not currently have access to this content.
Sign in via your Institution