• Cell-free mtDNA is elevated in the peripheral blood and BM of patients with myeloma compared with those of healthy controls.

  • Myeloma-derived mtDNA remodels the BM microenvironment through its effect of STING activation in myeloma-associated macrophages.

Mitochondrial damage–associated molecular patterns (mtDAMPs) include proteins, lipids, metabolites, and DNA and have various context-specific immunoregulatory functions. Cell-free mitochondrial DNA (mtDNA) is recognized via pattern recognition receptors and is a potent activator of the innate immune system. Cell-free mtDNA is elevated in the circulation of trauma patients and patients with cancer; however, the functional consequences of elevated mtDNA are largely undefined. Multiple myeloma (MM) relies upon cellular interactions within the bone marrow (BM) microenvironment for survival and progression. Here, using in vivo models, we describe the role of MM cell–derived mtDAMPs in the protumoral BM microenvironment and the mechanism and functional consequence of mtDAMPs in myeloma disease progression. Initially, we identified elevated levels of mtDNA in the peripheral blood serum of patients with MM compared with those of healthy controls. Using the MM1S cells engrafted into nonobese diabetic severe combined immunodeficient gamma mice, we established that elevated mtDNA was derived from MM cells. We further show that BM macrophages sense and respond to mtDAMPs through the stimulator of interferon genes (STING) pathway, and inhibition of this pathway reduces MM tumor burden in the KaLwRij-5TGM1 mouse model. Moreover, we found that MM-derived mtDAMPs induced upregulation of chemokine signatures in BM macrophages, and inhibition of this signature resulted in egress of MM cells from the BM. Here, we demonstrate that malignant plasma cells release mtDNA, a form of mtDAMPs, into the myeloma BM microenvironment, which in turn activates macrophages via STING signaling. We establish the functional role of these mtDAMP-activated macrophages in promoting disease progression and retaining MM cells in the protumoral BM microenvironment.

1.
Hemminki
K
,
Försti
A
,
Hansson
M
.
Incidence, mortality and survival in multiple myeloma compared to other hematopoietic neoplasms in Sweden up to year 2016
.
Sci Rep
.
2021
;
11
(
1
):
17272
.
2.
Mai
EK
,
Haas
E-M
,
Lücke
S
, et al
.
A systematic classification of death causes in multiple myeloma
.
Blood Cancer J
.
2018
;
8
(
3
):
30
.
3.
Mohty
M
,
Cavo
M
,
Fink
L
, et al
.
Understanding mortality in multiple myeloma: findings of a European retrospective chart review
.
Eur J Haematol
.
2019
;
103
(
2
):
107
-
115
.
4.
Nakahara
F
,
Borger
DK
,
Wei
Q
, et al
.
Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells
.
Nat Cell Biol
.
2019
;
21
(
5
):
560
-
567
.
5.
Pinho
S
,
Frenette
PS
.
Haematopoietic stem cell activity and interactions with the niche
.
Nat Rev Mol Cell Biol
.
2019
;
20
(
5
):
303
-
320
.
6.
Saçma
M
,
Pospiech
J
,
Bogeska
R
, et al
.
Haematopoietic stem cells in perisinusoidal niches are protected from ageing
.
Nat Cell Biol
.
2019
;
21
(
11
):
1309
-
1320
.
7.
Chow
A
,
Lucas
D
,
Hidalgo
A
, et al
.
Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche
.
J Exp Med
.
2011
;
208
(
2
):
261
-
271
.
8.
Winkler
IG
,
Sims
NA
,
Pettit
AR
, et al
.
Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs
.
Blood
.
2010
;
116
(
23
):
4815
-
4828
.
9.
Udagawa
N
,
Takahashi
N
,
Akatsu
T
, et al
.
Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells
.
Proc Natl Acad Sci U S A
.
1990
;
87
(
18
):
7260
-
7264
.
10.
Moore
JA
,
Mistry
JJ
,
Hellmich
C
, et al
.
LC3-associated phagocytosis in bone marrow macrophages suppresses acute myeloid leukemia progression through STING activation
.
J Clin Invest
.
2022
;
132
(
5
):
e153157
.
11.
Cunha
LD
,
Yang
M
,
Carter
R
, et al
.
LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance
.
Cell
.
2018
;
175
(
2
):
429
-
441.e16
.
12.
Zhang
D
,
Huang
J
,
Wang
F
, et al
.
BMI1 regulates multiple myeloma-associated macrophage’s pro-myeloma functions
.
Cell Death Dis
.
2021
;
12
(
5
):
495
.
13.
Wang
H
,
Hu
WM
,
Xia
ZJ
, et al
.
High numbers of CD163+ tumor-associated macrophages correlate with poor prognosis in multiple myeloma patients receiving bortezomib-based regimens
.
J Cancer
.
2019
;
10
(
14
):
3239
-
3245
.
14.
Sun
J
,
Park
C
,
Guenthner
N
, et al
.
Tumor-associated macrophages in multiple myeloma: advances in biology and therapy
.
J Immunother Cancer
.
2022
;
10
(
4
):
e003975
.
15.
Wenceslau
CF
,
McCarthy
CG
,
Szasz
T
,
Spitler
K
,
Goulopoulou
S
,
Webb
RC
;
Working Group on DAMPs in Cardiovascular Disease
.
Mitochondrial damage-associated molecular patterns and vascular function
.
Eur Heart J
.
2014
;
35
(
18
):
1172
-
1177
.
16.
Zhang
Q
,
Raoof
M
,
Chen
Y
, et al
.
Circulating mitochondrial DAMPs cause inflammatory responses to injury
.
Nature
.
2010
;
464
(
7285
):
104
-
107
.
17.
Gong
T
,
Liu
L
,
Jiang
W
,
Zhou
R
.
DAMP-sensing receptors in sterile inflammation and inflammatory diseases
.
Nat Rev Immunol
.
2020
;
20
(
2
):
95
-
112
.
18.
Bellizzi
D
,
D'Aquila
P
,
Scafone
T
, et al
.
The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern
.
DNA Res
.
2013
;
20
(
6
):
537
-
547
.
19.
Afrifa
J
,
Zhao
T
,
Yu
J
.
Circulating mitochondria DNA, a non-invasive cancer diagnostic biomarker candidate
.
Mitochondrion
.
2019
;
47
:
238
-
243
.
20.
Ruiz-Heredia
Y
,
Ortiz-Ruiz
A
,
Samur
MK
, et al
.
Pathogenetic and prognostic implications of increased mitochondrial content in multiple myeloma
.
Cancers
.
2021
;
13
(
13
):
3189
.
21.
Bode
C
,
Fox
M
,
Tewary
P
, et al
.
Human plasmacytoid dentritic cells elicit a type I interferon response by sensing DNA via the cGAS-STING signaling pathway
.
Eur J Immunol
.
2016
;
46
(
7
):
1615
-
1621
.
22.
Motwani
M
,
Pesiridis
S
,
Fitzgerald
KA
.
DNA sensing by the cGAS-STING pathway in health and disease
.
Nat Rev Genet
.
2019
;
20
(
11
):
657
-
674
.
23.
Decout
A
,
Katz
JD
,
Venkatraman
S
,
Ablasser
A
.
The cGAS-STING pathway as a therapeutic target in inflammatory diseases
.
Nat Rev Immunol
.
2021
;
21
(
9
):
548
-
569
.
24.
Zhang
Y
,
Tan
J
,
Miao
Y
,
Zhang
Q
.
The effect of extracellular vesicles on the regulation of mitochondria under hypoxia
.
Cell Death Dis
.
2021
;
12
(
4
):
358
.
25.
Amari
L
,
Germain
M
.
Mitochondrial extracellular vesicles - origins and roles
.
Front Mol Neurosci
.
2021
;
14
:
767219
.
26.
Gundesen
MT
,
Lund
T
,
Moeller
HEH
,
Abildgaard
N
.
Plasma cell leukemia: definition, presentation, and treatment
.
Curr Oncol Rep
.
2019
;
21
(
1
):
8
.
27.
Dutta
AK
,
Alberge
JB
,
Sklavenitis-Pistofidis
R
,
Lightbody
ED
,
Getz
G
,
Ghobrial
IM
.
Single-cell profiling of tumour evolution in multiple myeloma - opportunities for precision medicine
.
Nat Rev Clin Oncol
.
2022
;
19
(
4
):
223
-
236
.
28.
Bustoros
M
,
Anand
S
,
Sklavenitis-Pistofidis
R
, et al
.
Genetic subtypes of smoldering multiple myeloma are associated with distinct pathogenic phenotypes and clinical outcomes
.
Nat Commun
.
2022
;
13
(
1
):
3449
.
29.
Zavidij
O
,
Haradhvala
NJ
,
Mouhieddine
TH
, et al
.
Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma
.
Nat Cancer
.
2020
;
1
(
5
):
493
-
506
.
30.
Vo
JN
,
Wu
Y-M
,
Mishler
J
, et al
.
The genetic heterogeneity and drug resistance mechanisms of relapsed refractory multiple myeloma
.
Nat Commun
.
2022
;
13
(
1
):
3750
.
31.
Lohr
JG
,
Stojanov
P
,
Carter
SL
, et al
.
Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy
.
Cancer Cell
.
2014
;
25
(
1
):
91
-
101
.
32.
Ferguson
ID
,
Patiño-Escobar
B
,
Tuomivaara
ST
, et al
.
The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance
.
Nat Commun
.
2022
;
13
(
1
):
4121
.
33.
Terpos
E
,
Mikhael
J
,
Hajek
R
, et al
.
Management of patients with multiple myeloma beyond the clinical-trial setting: understanding the balance between efficacy, safety and tolerability, and quality of life
.
Blood Cancer J
.
2021
;
11
(
2
):
40
.
34.
Neuse
CJ
,
Lomas
OC
,
Schliemann
C
, et al
.
Genome instability in multiple myeloma
.
Leukemia
.
2020
;
34
(
11
):
2887
-
2897
.
35.
Pittet
MJ
,
Michielin
O
,
Migliorini
D
.
Clinical relevance of tumour-associated macrophages
.
Nat Rev Clin Oncol
.
2022
;
19
(
6
):
402
-
421
.
36.
Zheng
Y
,
Cai
Z
,
Wang
S
, et al
.
Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis
.
Blood
.
2009
;
114
(
17
):
3625
-
3628
.
37.
Opperman
KS
,
Vandyke
K
,
Psaltis
PJ
,
Noll
JE
,
Zannettino
ACW
.
Macrophages in multiple myeloma: key roles and therapeutic strategies
.
Cancer Metastasis Rev
.
2021
;
40
(
1
):
273
-
284
.
38.
Opperman
KS
,
Vandyke
K
,
Clark
KC
, et al
.
Clodronate-liposome mediated macrophage depletion abrogates multiple myeloma tumor establishment in vivo
.
Neoplasia
.
2019
;
21
(
8
):
777
-
787
.
39.
Zeissig
MN
,
Hewett
DR
,
Panagopoulos
V
, et al
.
Expression of the chemokine receptor CCR1 promotes the dissemination of multiple myeloma plasma cells in vivo
.
Haematologica
.
2021
;
106
(
12
):
3176
-
3187
.
40.
Grazioli
S
,
Pugin
J
.
Mitochondrial damage-associated molecular patterns: from inflammatory signaling to human diseases
.
Front Immunol
.
2018
;
9
:
832
.
41.
Ellinger
J
,
Albers
P
,
Müller
SC
,
von Ruecker
A
,
Bastian
PJ
.
Circulating mitochondrial DNA in the serum of patients with testicular germ cell cancer as a novel noninvasive diagnostic biomarker
.
BJU Int
.
2009
;
104
(
1
):
48
-
52
.
42.
Mahmoud
EH
,
Fawzy
A
,
Ahmad
OK
,
Ali
AM
.
Plasma circulating cell-free nuclear and mitochondrial DNA as potential biomarkers in the peripheral blood of breast cancer patients
.
Asian Pac J Cancer Prev
.
2015
;
16
(
18
):
8299
-
8305
.
43.
Huang
CY
,
Chen
YM
,
Wu
CH
, et al
.
Circulating free mitochondrial DNA concentration and its association with erlotinib treatment in patients with adenocarcinoma of the lung
.
Oncol Lett
.
2014
;
7
(
6
):
2180
-
2184
.
44.
Curran
E
,
Chen
X
,
Corrales
L
, et al
.
STING pathway activation stimulates potent immunity against acute myeloid leukemia
.
Cell Rep
.
2016
;
15
(
11
):
2357
-
2366
.
45.
Wang
Q
,
Bergholz
JS
,
Ding
L
, et al
.
STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer
.
Nat Commun
.
2022
;
13
(
1
):
3022
.
46.
Poh
AR
,
Ernst
M
.
Targeting macrophages in cancer: from bench to bedside
.
Front Oncol
.
2018
;
8
:
49
.
You do not currently have access to this content.
Sign in via your Institution