• Heme drives a coordinated functional and metabolic reprogramming of macrophages via suppression of efferocytosis and mitochondrial remodeling.

  • Macrophage metabolic rewiring by heme scavenging or PGC1α/PPARγ modulation promotes tissue damage and inflammation resolution in SCD.

Sickle cell disease (SCD) is hallmarked by an underlying chronic inflammatory condition, which is contributed by heme-activated proinflammatory macrophages. Although previous studies addressed heme ability to stimulate macrophage inflammatory skewing through Toll-like receptor4 (TLR4)/reactive oxygen species signaling, how heme alters cell functional properties remains unexplored. Macrophage-mediated immune cell recruitment and apoptotic cell (AC) clearance are relevant in the context of SCD, in which tissue damage, cell apoptosis, and inflammation occur owing to vaso-occlusive episodes, hypoxia, and ischemic injury. Here we show that heme strongly alters macrophage functional response to AC damage by exacerbating immune cell recruitment and impairing cell efferocytic capacity. In SCD, heme-driven excessive leukocyte influx and defective efferocytosis contribute to exacerbated tissue damage and sustained inflammation. Mechanistically, these events depend on heme-mediated activation of TLR4 signaling and suppression of the transcription factor proliferator-activated receptor γ (PPARγ) and its coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). These changes reduce efferocytic receptor expression and promote mitochondrial remodeling, resulting in a coordinated functional and metabolic reprogramming of macrophages. Overall, this results in limited AC engulfment, impaired metabolic shift to mitochondrial fatty acid β-oxidation, and, ultimately, reduced secretion of the antiinflammatory cytokines interleukin-4 (IL-4) and IL-10, with consequent inhibition of continual efferocytosis, resolution of inflammation, and tissue repair. We further demonstrate that impaired phagocytic capacity is recapitulated by macrophage exposure to plasma of patients with SCD and improved by hemopexin-mediated heme scavenging, PPARγ agonists, or IL-4 exposure through functional and metabolic macrophage rewiring. Our data indicate that therapeutic improvement of heme-altered macrophage functional properties via heme scavenging or PGC1α/PPARγ modulation significantly ameliorates tissue damage associated with SCD pathophysiology.

1.
Vinchi
F
,
Vance
SZ
.
Reshaping erythrophagocytosis and iron recycling by reticuloendothelial macrophages
.
Hemasphere
.
2021
;
5
(
2
):
e525
.
2.
Alam
MZ
,
Devalaraja
S
,
Haldar
M
.
The heme connection: linking erythrocytes and macrophage biology
.
Front Immunol
.
2017
;
8
:
33
.
3.
Soares
MP
,
Hamza
I
.
Macrophages and iron metabolism
.
Immunity
.
2016
;
44
(
3
):
492
-
504
.
4.
Hvidberg
V
,
Maniecki
MB
,
Jacobsen
C
,
Hojrup
P
,
Moller
HJ
,
Moestrup
SK
.
Identification of the receptor scavenging hemopexin-heme complexes
.
Blood
.
2005
;
106
(
7
):
2572
-
2579
.
5.
Smith
A
,
McCulloh
RJ
.
Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders
.
Front Physiol
.
2015
;
6
:
187
.
6.
Tolosano
E
,
Fagoonee
S
,
Morello
N
,
Vinchi
F
,
Fiorito
V
.
Heme scavenging and the other facets of hemopexin
.
Antioxid Redox Signal
.
2010
;
12
(
2
):
305
-
320
.
7.
Schaer
DJ
,
Vinchi
F
,
Ingoglia
G
,
Tolosano
E
,
Buehler
PW
.
Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development
.
Front Physiol
.
2014
;
5
:
415
.
8.
Vinchi
F
,
Costa da Silva
M
,
Ingoglia
G
, et al
.
Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease
.
Blood
.
2016
;
127
(
4
):
473
-
486
.
9.
Vinchi
F
,
Sparla
R
,
Passos
ST
, et al
.
Vasculo-toxic and pro-inflammatory action of unbound haemoglobin, haem and iron in transfusion-dependent patients with haemolytic anaemias
.
Br J Haematol
.
2021
;
193
(
3
):
637
-
658
.
10.
Tangudu
NK
,
Alan
B
,
Vinchi
F
, et al
.
Scavenging reactive oxygen species production normalizes ferroportin expression and ameliorates cellular and systemic iron disbalances in hemolytic mouse model
.
Antioxid Redox Signal
.
2018
;
29
(
5
):
484
-
499
.
11.
Vinchi
F
,
De Franceschi
L
,
Ghigo
A
, et al
.
Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases
.
Circulation
.
2013
;
127
(
12
):
1317
-
1329
.
12.
Vinchi
F
,
Gastaldi
S
,
Silengo
L
,
Altruda
F
,
Tolosano
E
.
Hemopexin prevents endothelial damage and liver congestion in a mouse model of heme overload
.
Am J Pathol
.
2008
;
173
(
1
):
289
-
299
.
13.
Redinus
K
,
Baek
JH
,
Yalamanoglu
A
, et al
.
An Hb-mediated circulating macrophage contributing to pulmonary vascular remodeling in sickle cell disease
.
JCI Insight
.
2019
;
4
(
15
):
e127860
.
14.
Gbotosho
OT
,
Kapetanaki
MG
,
Kato
GJ
.
The worst things in life are free: the role of free heme in sickle cell disease
.
Front Immunol
.
2020
;
11
:
561917
.
15.
Santiago
RP
,
Guarda
CC
,
Figueiredo
CVB
, et al
.
Serum haptoglobin and hemopexin levels are depleted in pediatric sickle cell disease patients
.
Blood Cells Mol Dis
.
2018
;
72
:
34
-
36
.
16.
Muller-Eberhard
U
,
Javid
J
,
Liem
HH
,
Hanstein
A
,
Hanna
M
.
Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases
.
Blood
.
1968
;
32
(
5
):
811
-
815
.
17.
Allali
S
,
Maciel
TT
,
Hermine
O
,
de Montalembert
M
.
Innate immune cells, major protagonists of sickle cell disease pathophysiology
.
Haematologica
.
2020
;
105
(
2
):
273
-
283
.
18.
Locati
M
,
Curtale
G
,
Mantovani
A
.
Diversity, mechanisms, and significance of macrophage plasticity
.
Annu Rev Pathol
.
2020
;
15
:
123
-
147
.
19.
Pradhan
P
,
Vijayan
V
,
Gueler
F
,
Immenschuh
S
.
Interplay of heme with macrophages in homeostasis and inflammation
.
Int J Mol Sci
.
2020
;
21
(
3
):
740
.
20.
Bozza
MT
,
Jeney
V
.
Pro-inflammatory actions of heme and other hemoglobin-derived DAMPs
.
Front Immunol
.
2020
;
11
:
1323
.
21.
Conran
N
,
Belcher
JD
.
Inflammation in sickle cell disease
.
Clin Hemorheol Microcirc
.
2018
;
68
(
2-3
):
263
-
299
.
22.
Vinchi
F
.
Non-transferrin-bound iron in the spotlight: novel mechanistic insights into the vasculotoxic and atherosclerotic effect of iron
.
Antioxid Redox Signal
.
2021
;
35
(
6
):
387
-
414
.
23.
Murray
PJ
.
Macrophage polarization
.
Annu Rev Physiol
.
2017
;
79
:
541
-
566
.
24.
Dutra
FF
,
Bozza
MT
.
Heme on innate immunity and inflammation
.
Front Pharmacol
.
2014
;
5
:
115
.
25.
Figueiredo
RT
,
Fernandez
PL
,
Mourao-Sa
DS
, et al
.
Characterization of heme as activator of Toll-like receptor 4
.
J Biol Chem
.
2007
;
282
(
28
):
20221
-
20229
.
26.
Soares
MP
,
Bozza
MT
.
Red alert: labile heme is an alarmin
.
Curr Opin Immunol
.
2016
;
38
:
94
-
100
.
27.
Belcher
JD
,
Chen
C
,
Nguyen
J
, et al
.
Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease
.
Blood
.
2014
;
123
(
3
):
377
-
390
.
28.
Gladwin
MT
,
Ofori-Acquah
SF
.
Erythroid DAMPs drive inflammation in SCD
.
Blood
.
2014
;
123
(
24
):
3689
-
3690
.
29.
Khaibullina
A
,
Adjei
EA
,
Afangbedji
N
, et al
.
RON kinase inhibition reduces renal endothelial injury in sickle cell disease mice
.
Haematologica
.
2018
;
103
(
5
):
787
-
798
.
30.
Nahrendorf
M
,
Swirski
FK
.
Abandoning M1/M2 for a network model of macrophage function
.
Circ Res
.
2016
;
119
(
3
):
414
-
417
.
31.
Bank
N
,
Kiroycheva
M
,
Ahmed
F
, et al
.
Peroxynitrite formation and apoptosis in transgenic sickle cell mouse kidneys
.
Kidney Int
.
1998
;
54
(
5
):
1520
-
1528
.
32.
Hebbel
RP
,
Belcher
JD
,
Vercellotti
GM
.
The multifaceted role of ischemia/reperfusion in sickle cell anemia
.
J Clin Invest
.
2020
;
130
(
3
):
1062
-
1072
.
33.
Ansari
J
,
Gavins
FNE
.
Ischemia-reperfusion injury in sickle cell disease: from basics to therapeutics
.
Am J Pathol
.
2019
;
189
(
4
):
706
-
718
.
34.
Suddle
AR
.
Management of liver complications in sickle cell disease
.
Hematology Am Soc Hematol Educ Program
.
2019
;
2019
(
1
):
345
-
350
.
35.
Siciliano
A
,
Malpeli
G
,
Platt
OS
, et al
.
Abnormal modulation of cell protective systems in response to ischemic/reperfusion injury is important in the development of mouse sickle cell hepatopathy
.
Haematologica
.
2011
;
96
(
1
):
24
-
32
.
36.
Berry
PA
,
Cross
TJS
,
Thein
SL
, et al
.
Hepatic dysfunction in sickle cell disease: a new system of classification based on global assessment
.
Clin Gastroenterol Hepatol
.
2007
;
5
(
12
):
1469
-
1476
. quiz 1369.
37.
Traina
F
,
Jorge
SG
,
Yamanaka
A
,
de Meirelles
LR
,
Costa
FF
,
Saad
STO
.
Chronic liver abnormalities in sickle cell disease: a clinicopathological study in 70 living patients
.
Acta Haematol
.
2007
;
118
(
3
):
129
-
135
.
38.
Ross
EA
,
Devitt
A
,
Johnson
JR
.
Macrophages: the good, the bad, and the gluttony
.
Front Immunol
.
2021
;
12
:
708186
.
39.
Costa da Silva
M
,
Breckwoldt
MO
,
Vinchi
F
, et al
.
Iron induces anti-tumor activity in tumor-associated macrophages
.
Front Immunol
.
2017
;
8
:
1479
.
40.
Elliott
MR
,
Koster
KM
,
Murphy
PS
.
Efferocytosis signaling in the regulation of macrophage inflammatory responses
.
J Immunol
.
2017
;
198
(
4
):
1387
-
1394
.
41.
Kourtzelis
I
,
Hajishengallis
G
,
Chavakis
T
.
Phagocytosis of apoptotic cells in resolution of inflammation
.
Front Immunol
.
2020
;
11
:
553
.
42.
Yang
M
,
Antoine
DJ
,
Weemhoff
JL
, et al
.
Biomarkers distinguish apoptotic and necrotic cell death during hepatic ischemia/reperfusion injury in mice
.
Liver Transpl
.
2014
;
20
(
11
):
1372
-
1382
.
43.
Yoon
YS
,
Kim
SY
,
Kim
MJ
,
Lim
JH
,
Cho
MS
,
Kang
JL
.
PPARγ activation following apoptotic cell instillation promotes resolution of lung inflammation and fibrosis via regulation of efferocytosis and proresolving cytokines
.
Mucosal Immunol
.
2015
;
8
(
5
):
1031
-
1046
.
44.
Fernandez-Marcos
PJ
,
Auwerx
J
.
Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis
.
Am J Clin Nutr
.
2011
;
93
(
4
):
884S
-
890
.
45.
Ventura-Clapier
R
,
Garnier
A
,
Veksler
V
.
Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α
.
Cardiovasc Res
.
2008
;
79
(
2
):
208
-
217
.
46.
Wang
Y
,
Subramanian
M
,
Yurdagul
A
, et al
.
Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages
.
Cell
.
2017
;
171
(
2
):
331
-
345.e22
.
47.
Park
D
,
Han
CZ
,
Elliott
MR
, et al
.
Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein
.
Nature
.
2011
;
477
(
7363
):
220
-
224
.
48.
Bories
GFP
,
Yeudall
S
,
Serbulea
V
,
Fox
TE
,
Isakson
BE
,
Leitinger
N
.
Macrophage metabolic adaptation to heme detoxification involves CO-dependent activation of the pentose phosphate pathway
.
Blood
.
2020
;
136
(
13
):
1535
-
1548
.
49.
Merlin
J
,
Ivanov
S
,
Dumont
A
, et al
.
Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation
.
Nat Metab
.
2021
;
3
(
10
):
1313
-
1326
.
50.
Zhang
S
,
Weinberg
S
,
DeBerge
M
, et al
.
Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair
.
Cell Metab
.
2019
;
29
(
2
):
443
-
456.e5
.
51.
Majai
G
,
Sarang
Z
,
Csomos
K
,
Zahuczky
G
,
Fesus
L
.
PPARgamma-dependent regulation of human macrophages in phagocytosis of apoptotic cells
.
Eur J Immunol
.
2007
;
37
(
5
):
1343
-
1354
.
52.
Prestes
EB
,
Alves
LS
,
Rodrigues
DAS
, et al
.
Mitochondrial reactive oxygen species participate in signaling triggered by heme in macrophages and upon hemolysis
.
J Immunol
.
2020
;
205
(
10
):
2795
-
2805
.
53.
Palomer
X
,
Alvarez-Guardia
D
,
Rodriguez-Calvo
R
, et al
.
TNF-alpha reduces PGC-1alpha expression through NF-kappaB and p38 MAPK leading to increased glucose oxidation in a human cardiac cell model
.
Cardiovasc Res
.
2009
;
81
(
4
):
703
-
712
.
54.
Planavila
A
,
Sanchez
RM
,
Merlos
M
,
Laguna
JC
,
Vazquez-Carrera
M
.
Atorvastatin prevents peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) downregulation in lipopolysaccharide-stimulated H9c2 cells
.
Biochim Biophys Acta
.
2005
;
1736
(
2
):
120
-
127
.
55.
Smith
JA
,
Stallons
LJ
,
Collier
JB
,
Chavin
KD
,
Schnellmann
RG
.
Suppression of mitochondrial biogenesis through toll-like receptor 4-dependent mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling in endotoxin-induced acute kidney injury
.
J Pharmacol Exp Ther
.
2015
;
352
(
2
):
346
-
357
.
56.
Strum
JC
,
Shehee
R
,
Virley
D
, et al
.
Rosiglitazone induces mitochondrial biogenesis in mouse brain
.
J Alzheimers Dis
.
2007
;
11
(
1
):
45
-
51
.
57.
Landreth
G
,
Jiang
Q
,
Mandrekar
S
,
Heneka
M
.
PPARgamma agonists as therapeutics for the treatment of Alzheimer's disease
.
Neurotherapeutics
.
2008
;
5
(
3
):
481
-
489
.
58.
Hondares
E
,
Mora
O
,
Yubero
P
, et al
.
Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation
.
Endocrinology
.
2006
;
147
(
6
):
2829
-
2838
.
59.
Bogacka
I
,
Xie
H
,
Bray
GA
,
Smith
SR
.
The effect of pioglitazone on peroxisome proliferator-activated receptor-gamma target genes related to lipid storage in vivo
.
Diabetes Care
.
2004
;
27
(
7
):
1660
-
1667
.
60.
Alvarez-Guardia
D
,
Palomer
X
,
Coll
T
, et al
.
The p65 subunit of NF-kappaB binds to PGC-1alpha, linking inflammation and metabolic disturbances in cardiac cells
.
Cardiovasc Res
.
2010
;
87
(
3
):
449
-
458
.
61.
Perez
S
,
Rius-Perez
S
,
Finamor
I
, et al
.
Obesity causes PGC-1α deficiency in the pancreas leading to marked IL-6 upregulation via NF-κB in acute pancreatitis
.
J Pathol
.
2019
;
247
(
1
):
48
-
59
.
62.
Ricote
M
,
Li
AC
,
Willson
TM
,
Kelly
CJ
,
Glass
CK
.
The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation
.
Nature
.
1998
;
391
(
6662
):
79
-
82
.
63.
Rius-Perez
S
,
Torres-Cuevas
I
,
Millan
I
,
Ortega
AL
,
Perez
S
.
PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism
.
Oxid Med Cell Longev
.
2020
;
2020
:
1452696
.
64.
Loane
DJ
,
Deighan
BF
,
Clarke
RM
,
Griffin
RJ
,
Lynch
AM
,
Lynch
MA
.
Interleukin-4 mediates the neuroprotective effects of rosiglitazone in the aged brain
.
Neurobiol Aging
.
2009
;
30
(
6
):
920
-
931
.
65.
Qi
Y
,
Yin
X
,
Wang
S
, et al
.
PGC-1alpha silencing compounds the perturbation of mitochondrial function caused by mutant SOD1 in skeletal muscle of ALS mouse model
.
Front Aging Neurosci
.
2015
;
7
:
204
.
66.
Huang
JT
,
Welch
JS
,
Ricote
M
, et al
.
Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase
.
Nature
.
1999
;
400
(
6742
):
378
-
382
.
67.
Vats
D
,
Mukundan
L
,
Odegaard
JI
, et al
.
Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation
.
Cell Metab
.
2006
;
4
(
1
):
13
-
24
.
68.
Fernandez-Boyanapalli
R
,
Frasch
SC
,
Riches
DWH
,
Vandivier
RW
,
Henson
PM
,
Bratton
DL
.
PPARγ activation normalizes resolution of acute sterile inflammation in murine chronic granulomatous disease
.
Blood
.
2010
;
116
(
22
):
4512
-
4522
.
69.
Han
CZ
,
Ravichandran
KS
.
Metabolic connections during apoptotic cell engulfment
.
Cell
.
2011
;
147
(
7
):
1442
-
1445
.
70.
A-Gonzalez
N
,
Bensinger
SJ
,
Hong
C
, et al
.
Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR
.
Immunity
.
2009
;
31
(
2
):
245
-
258
.
71.
Mukundan
L
,
Odegaard
JI
,
Morel
CR
, et al
.
PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance
.
Nat Med
.
2009
;
15
(
11
):
1266
-
1272
.
72.
Werfel
TA
,
Cook
RS
.
Efferocytosis in the tumor microenvironment
.
Semin Immunopathol
.
2018
;
40
(
6
):
545
-
554
.
73.
Li
C
,
Ding
XY
,
Xiang
DM
, et al
.
Enhanced M1 and impaired M2 macrophage polarization and reduced mitochondrial biogenesis via inhibition of AMP kinase in chronic kidney disease
.
Cell Physiol Biochem
.
2015
;
36
(
1
):
358
-
372
.
74.
Pearce
EL
,
Poffenberger
MC
,
Chang
CH
,
Jones
RG
.
Fueling immunity: insights into metabolism and lymphocyte function
.
Science
.
2013
;
342
(
6155
):
1242454
.
75.
Date
D
,
Das
R
,
Narla
G
,
Simon
DI
,
Jain
MK
,
Mahabeleshwar
GH
.
Kruppel-like transcription factor 6 regulates inflammatory macrophage polarization
.
J Biol Chem
.
2014
;
289
(
15
):
10318
-
10329
.
76.
Hanayama
R
,
Tanaka
M
,
Miyasaka
K
, et al
.
Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice
.
Science
.
2004
;
304
(
5674
):
1147
-
1150
.
77.
Scott
RS
,
McMahon
EJ
,
Pop
SM
, et al
.
Phagocytosis and clearance of apoptotic cells is mediated by MER
.
Nature
.
2001
;
411
(
6834
):
207
-
211
.
78.
Waisbourd-Zinman
O
,
Frenklak
R
,
Hakakian
O
,
Hilmara
D
,
Lin
H
.
Autoimmune liver disease in patients with sickle cell disease
.
J Pediatr Hematol Oncol
.
2021
;
43
(
7
):
254
-
257
.
79.
Li-Thiao-Te
V
,
Uettwiller
F
,
Quartier
P
, et al
.
Coexistent sickle-cell anemia and autoimmune disease in eight children: pitfalls and challenges
.
Pediatr Rheumatol Online J
.
2018
;
16
(
1
):
5
.
80.
Baethge
BA
,
Bordelon
TR
,
Mills
GM
,
Bowen
LM
,
Wolf
RE
,
Bairnsfather
L
.
Antinuclear antibodies in sickle cell disease
.
Acta Haematol
.
1990
;
84
(
4
):
186
-
189
.
You do not currently have access to this content.
Sign in via your Institution