• In adult KMT2A-r BCP-ALL, TP53 and IKZF1 alterations are associated with very poor outcome.

  • KMT2A genomic fusion should be the preferred MRD marker over IG/TR to assess early treatment response and predict long-term outcome.

KMT2A-rearranged (KMT2A-r) B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is widely recognized as a high-risk leukemia in both children and adults. However, there is a paucity of data on adults treated in recent protocols, and the optimal treatment strategy for these patients is still a matter of debate. In this study, we set out to refine the prognosis of adult KMT2A-r BCP-ALL treated with modern chemotherapy regimen and investigate the prognostic impact of comutations and minimal residual disease (MRD). Of 1091 adult patients with Philadelphia-negative BCP-ALL enrolled in 3 consecutive trials from the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL), 141 (12.9%) had KMT2A-r, with 5-year cumulative incidence of relapse (CIR) and overall survival (OS) rates of 40.7% and 53.3%, respectively. Molecular profiling highlighted a low mutational burden in this subtype, reminiscent of infant BCP-ALL. However, the presence of TP53 and/or IKZF1 alterations defined a subset of patients with significantly poorer CIR (69.3% vs 36.2%; P = .001) and OS (28.1% vs 60.7%; P = .006) rates. Next, we analyzed the prognostic implication of MRD measured after induction and first consolidation, using both immunoglobulin (IG) or T-cell receptor (TR) gene rearrangements and KMT2A genomic fusion as markers. In approximately one-third of patients, IG/TR rearrangements were absent or displayed clonal evolution during the disease course, compromising MRD monitoring. In contrast, KMT2A-based MRD was highly reliable and strongly associated with outcome, with early good responders having an excellent outcome (3-year CIR, 7.1%; OS, 92.9%). Altogether, our study reveals striking heterogeneity in outcomes within adults with KMT2A-r BCP-ALL and provides new biomarkers to guide risk-based therapeutic stratification.

1.
Pui
CH
,
Kane
JR
,
Crist
WM
.
Biology and treatment of infant leukemias
.
Leukemia
.
1995
;
9
(
5
):
762
-
769
.
2.
Moorman
AV
,
Harrison
CJ
,
Buck
GAN
, et al
.
Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial
.
Blood
.
2007
;
109
(
8
):
3189
-
3197
.
3.
Lafage-Pochitaloff
M
,
Baranger
L
,
Hunault
M
, et al
.
Impact of cytogenetic abnormalities in adults with Ph-negative B-cell precursor acute lymphoblastic leukemia
.
Blood
.
2017
;
130
(
16
):
1832
-
1844
.
4.
Meyer
C
,
Larghero
P
,
Almeida Lopes
B
, et al
.
The KMT2A recombinome of acute leukemias in 2023
.
Leukemia
.
2023
;
37
(
5
):
988
-
1005
.
5.
Brady
SW
,
Roberts
KG
,
Gu
Z
, et al
.
The genomic landscape of pediatric acute lymphoblastic leukemia
.
Nat Genet
.
2022
;
54
(
9
):
1376
-
1389
.
6.
Marks
DI
,
Moorman
AV
,
Chilton
L
, et al
.
The clinical characteristics, therapy and outcome of 85 adults with acute lymphoblastic leukemia and t(4;11)(q21;q23)/MLL-AFF1 prospectively treated in the UKALLXII/ECOG2993 trial
.
Haematologica
.
2013
;
98
(
6
):
945
-
952
.
7.
Motlló
C
,
Ribera
J-M
,
Morgades
M
, et al
.
Frequency and prognostic significance of t(v;11q23)/KMT2A rearrangements in adult patients with acute lymphoblastic leukemia treated with risk-adapted protocols
.
Leuk Lymphoma
.
2017
;
58
(
1
):
145
-
152
.
8.
Piciocchi
A
,
Messina
M
,
Elia
L
, et al
.
Prognostic impact of KMT2A-AFF1-positivity in 926 BCR-ABL1-negative B-lineage acute lymphoblastic leukemia patients treated in GIMEMA clinical trials since 1996
.
Am J Hematol
.
2021
;
96
(
9
):
E334
-
E338
.
9.
Richard-Carpentier
G
,
Kantarjian
HM
,
Tang
G
, et al
.
Outcomes of acute lymphoblastic leukemia with KMT2A (MLL) rearrangement: the MD Anderson experience
.
Blood Adv
.
2021
;
5
(
23
):
5415
-
5419
.
10.
Brown
P
,
Pieters
R
,
Biondi
A
.
How I treat infant leukemia
.
Blood
.
2019
;
133
(
3
):
205
-
214
.
11.
Pieters
R
,
De Lorenzo
P
,
Ancliffe
P
, et al
.
Outcome of infants younger than 1 year with acute lymphoblastic leukemia treated with the interfant-06 protocol: results from an international phase III randomized study
.
J Clin Oncol
.
2019
;
37
(
25
):
2246
-
2256
.
12.
Takachi
T
,
Watanabe
T
,
Miyamura
T
, et al
.
Hematopoietic stem cell transplantation for infants with high-risk KMT2A gene-rearranged acute lymphoblastic leukemia
.
Blood Adv
.
2021
;
5
(
19
):
3891
-
3899
.
13.
Kang
H
,
Wilson
CS
,
Harvey
RC
, et al
.
Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: a Children’s Oncology Group study
.
Blood
.
2012
;
119
(
8
):
1872
-
1881
.
14.
Sanjuan-Pla
A
,
Bueno
C
,
Prieto
C
, et al
.
Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia
.
Blood
.
2015
;
126
(
25
):
2676
-
2685
.
15.
Lin
S
,
Luo
RT
,
Ptasinska
A
, et al
.
Instructive role of MLL-fusion proteins revealed by a model of t(4;11) pro-b acute lymphoblastic leukemia
.
Cancer Cell
.
2016
;
30
(
5
):
737
-
749
.
16.
Chen
C
,
Yu
W
,
Alikarami
F
, et al
.
Single-cell multiomics reveals increased plasticity, resistant populations, and stem-cell-like blasts in KMT2A-rearranged leukemia
.
Blood
.
2022
;
139
(
14
):
2198
-
2211
.
17.
Tejedor
JR
,
Bueno
C
,
Vinyoles
M
, et al
.
Integrative methylome-transcriptome analysis unravels cancer cell vulnerabilities in infant MLL-rearranged B cell acute lymphoblastic leukemia
.
J Clin Invest
.
2021
;
131
(
13
):
e138833
.
18.
Khabirova
E
,
Jardine
L
,
Coorens
THH
, et al
.
Single-cell transcriptomics reveals a distinct developmental state of KMT2A-rearranged infant B-cell acute lymphoblastic leukemia
.
Nat Med
.
2022
;
28
(
4
):
743
-
751
.
19.
Isobe
T
,
Takagi
M
,
Sato-Otsubo
A
, et al
.
Multi-omics analysis defines highly refractory RAS burdened immature subgroup of infant acute lymphoblastic leukemia
.
Nat Commun
.
2022
;
13
(
1
):
4501
.
20.
Symeonidou
V
,
Jakobczyk
H
,
Bashanfer
S
, et al
.
Defining the fetal origin of MLL-AF4 infant leukemia highlights specific fatty acid requirements
.
Cell Rep
.
2021
;
37
(
4
):
109900
.
21.
Dobbins
SE
,
Sherborne
AL
,
Ma
YP
, et al
.
The silent mutational landscape of infant MLL-AF4 pro-B acute lymphoblastic leukemia
.
Genes Chromosomes Cancer
.
2013
;
52
(
10
):
954
-
960
.
22.
Andersson
AK
,
Ma
J
,
Wang
J
, et al
.
The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias
.
Nat Genet
.
2015
;
47
(
4
):
330
-
337
.
23.
Huguet
F
,
Leguay
T
,
Raffoux
E
, et al
.
Pediatric-inspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: the GRAALL-2003 study
.
J Clin Oncol
.
2009
;
27
(
6
):
911
-
918
.
24.
Gökbuget
N
,
Kneba
M
,
Raff
T
, et al
.
Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies
.
Blood
.
2012
;
120
(
9
):
1868
-
1876
.
25.
Beldjord
K
,
Chevret
S
,
Asnafi
V
, et al
.
Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia
.
Blood
.
2014
;
123
(
24
):
3739
-
3749
.
26.
Huguet
F
,
Chevret
S
,
Leguay
T
, et al
.
Intensified therapy of acute lymphoblastic leukemia in adults: report of the randomized GRAALL-2005 clinical trial
.
J Clin Oncol
.
2018
;
36
(
24
):
2514
-
2523
.
27.
Toft
N
,
Birgens
H
,
Abrahamsson
J
, et al
.
Results of NOPHO ALL2008 treatment for patients aged 1-45 years with acute lymphoblastic leukemia
.
Leukemia
.
2018
;
32
(
3
):
606
-
615
.
28.
Stock
W
,
Luger
SM
,
Advani
AS
, et al
.
A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403
.
Blood
.
2019
;
133
(
14
):
1548
-
1559
.
29.
Bassan
R
,
Spinelli
O
,
Oldani
E
, et al
.
Different molecular levels of post-induction minimal residual disease may predict hematopoietic stem cell transplantation outcome in adult Philadelphia-negative acute lymphoblastic leukemia
.
Blood Cancer J
.
2014
;
4
(
7
):
e225
.
30.
Ribera
J-M
,
Oriol
A
,
Morgades
M
, et al
.
Treatment of high-risk Philadelphia chromosome-negative acute lymphoblastic leukemia in adolescents and adults according to early cytologic response and minimal residual disease after consolidation assessed by flow cytometry: final results of the PETHEMA ALL-AR-03 trial
.
J Clin Oncol
.
2014
;
32
(
15
):
1595
-
1604
.
31.
O’Connor
D
,
Enshaei
A
,
Bartram
J
, et al
.
Genotype-specific minimal residual disease interpretation improves stratification in pediatric acute lymphoblastic leukemia
.
J Clin Oncol
.
2018
;
36
(
1
):
34
-
43
.
32.
Van der Velden
VHJ
,
Corral
L
,
Valsecchi
MG
, et al
.
Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol
.
Leukemia
.
2009
;
23
(
6
):
1073
-
1079
.
33.
Stutterheim
J
,
van der Sluis
IM
,
de Lorenzo
P
, et al
.
Clinical implications of minimal residual disease detection in infants with kmt2a-rearranged acute lymphoblastic leukemia treated on the interfant-06 protocol
.
J Clin Oncol
.
2021
;
39
(
6
):
652
-
662
.
34.
Passet
M
,
Kim
R
,
Gachet
S
, et al
.
Concurrent CDX2 cis-deregulation and UBTF::ATXN7L3 fusion define a novel high-risk subtype of B-cell ALL
.
Blood
.
2022
;
139
(
24
):
3505
-
3518
.
35.
Passet
M
,
Boissel
N
,
Sigaux
F
, et al
.
PAX5 P80R mutation identifies a novel subtype of B-cell precursor acute lymphoblastic leukemia with favorable outcome
.
Blood
.
2019
;
133
(
3
):
280
-
284
.
36.
van der Velden
VHJ
,
Cazzaniga
G
,
Schrauder
A
, et al
.
Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data
.
Leukemia
.
2007
;
21
(
4
):
604
-
611
.
37.
Stanulla
M
,
Dagdan
E
,
Zaliova
M
, et al
.
IKZF1plus defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric B-cell precursor acute lymphoblastic leukemia
.
J Clin Oncol
.
2018
;
36
(
12
):
1240
-
1249
.
38.
Attarbaschi
A
,
Möricke
A
,
Harrison
CJ
, et al
.
Outcomes of childhood noninfant acute lymphoblastic leukemia with 11q23/KMT2A rearrangements in a modern therapy era: a retrospective international study
.
J Clin Oncol
.
2023
;
41
(
7
):
1404
-
1422
.
39.
Clappier
E
,
Grardel
N
,
Bakkus
M
, et al
.
IKZF1 deletion is an independent prognostic marker in childhood B-cell precursor acute lymphoblastic leukemia, and distinguishes patients benefiting from pulses during maintenance therapy: results of the EORTC Children’s Leukemia Group study 58951
.
Leukemia
.
2015
;
29
(
11
):
2154
-
2161
.
40.
Duployez
N
,
Marceau-Renaut
A
,
Boissel
N
, et al
.
Comprehensive mutational profiling of core binding factor acute myeloid leukemia
.
Blood
.
2016
;
127
(
20
):
2451
-
2459
.
41.
Foà
R
,
Bassan
R
,
Vitale
A
, et al
.
Dasatinib-blinatumomab for Ph-positive acute lymphoblastic leukemia in adults
.
N Engl J Med
.
2020
;
383
(
17
):
1613
-
1623
.
42.
Döhner
H
,
Wei
AH
,
Appelbaum
FR
, et al
.
Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN
.
Blood
.
2022
;
140
(
12
):
1345
-
1377
.
43.
Saygin
C
,
Kishtagari
A
,
Cassaday
RD
, et al
.
Therapy-related acute lymphoblastic leukemia is a distinct entity with adverse genetic features and clinical outcomes
.
Blood Adv
.
2019
;
3
(
24
):
4228
-
4237
.
44.
Giebel
S
,
Marks
DI
,
Boissel
N
, et al
.
Hematopoietic stem cell transplantation for adults with Philadelphia chromosome-negative acute lymphoblastic leukemia in first remission: a position statement of the European Working Group for Adult Acute Lymphoblastic Leukemia (EWALL) and the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT)
.
Bone Marrow Transplant
.
2019
;
54
(
6
):
798
-
809
.
45.
Darzentas
F
,
Szczepanowski
M
,
Kotrová
M
, et al
.
IGH rearrangement evolution in adult KMT2A-rearranged B-cell precursor ALL: implications for cell-of-origin and MRD monitoring
.
HemaSphere
.
2023
;
7
(
1
):
e820
.
46.
Gardner
R
,
Wu
D
,
Cherian
S
, et al
.
Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy
.
Blood
.
2016
;
127
(
20
):
2406
-
2410
.
47.
Dhédin
N
,
Huynh
A
,
Maury
S
, et al
.
Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia
.
Blood
.
2015
;
125
(
16
):
2486
-
2496
. Quiz 2586.
48.
van der Sluis
IM
,
de Lorenzo
P
,
Kotecha
RS
, et al
.
Blinatumomab added to chemotherapy in infant lymphoblastic leukemia
.
N Engl J Med
.
2023
;
388
(
17
):
1572
-
1581
.
49.
Issa
GC
,
Aldoss
I
,
DiPersio
J
, et al
.
The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia
.
Nature
.
2023
;
615
(
7954
):
920
-
924
.
You do not currently have access to this content.
Sign in via your Institution