• TTMV::RARA-APL is more common in pediatric patients, with frequent extramedullary lesions and mutations in epigenetic regulator genes.

  • Patient-derived TTMV strains exhibit phylogenetic constraint; core integration region and fusion sequences were characterized.

Abstract

Integration of torque teno mini virus (TTMV) generating the TTMV::RARA (retinoic acid receptor α) fusion represents a newly recognized subtype of acute promyelocytic leukemia (APL) that merits detailed investigation. We present, to our knowledge, the first comprehensive characterization of its epidemiologic profile, clinical presentation, virologic characteristics, and underlying molecular mechanisms. Our findings indicate that TTMV::RARA is more prevalent in pediatric patients and represents the second most common retinoic acid receptor fusion after PML::RARA. Affected patients exhibit a high incidence of extramedullary involvement, particularly myeloid sarcoma. Cytogenetic abnormalities involving i(17)(q10) or 7q22 were identified in 52.0% of cases, largely in a mutually exclusive manner. Co-occurring mutations in epigenetic regulators were present in 76.9% of patients. Although most patients achieved initial remission, relapse was common and associated with rapid acquisition of all-trans retinoic acid (ATRA)–resistant mutation and secondary chemoresistance. Venetoclax-containing regimens demonstrated encouraging clinical efficacy. Phylogenetic analysis indicated that patient-derived TTMV strains clustered into a distinct clade. TTMV integration consistently occurred within RARA intron 2, involving a consensus fragment of 510 to 610 base pairs encompassing the viral promoter and open reading frame 2 (ORF2) N terminus, likely mediated by microhomology-driven recombination. Tandem RUNX1-binding motifs within the integrated viral promoter may underlie the myelotropism of these TTMV strains and facilitate transcriptional activation of TTMV::RARA. The chimeric protein retains at least the first 56 N-terminal residues of ORF2 and remains transcriptionally responsive to pharmacological concentrations of ATRA. These findings establish TTMV::RARA-APL as a distinct leukemia entity, laying the foundation for future studies on virus-mediated leukemogenesis and therapeutic strategies.

1.
Astolfi
A
,
Masetti
R
,
Indio
V
, et al
.
Torque teno mini virus as a cause of childhood acute promyelocytic leukemia lacking PML/RARA fusion
.
Blood
.
2021
;
138
(
18
):
1773
-
1777
.
2.
Tsai
HK
,
Sabbagh
MF
,
Montesion
M
, et al
.
Acute promyelocytic leukemia with Torque Teno mini virus::RARA fusion: an approach to screening and diagnosis
.
Mod Pathol
.
2024
;
37
(
7
):
100509
.
3.
Sala-Torra
O
,
Beppu
LW
,
Abukar
FA
,
Radich
JP
,
Yeung
CCS
.
TTMV-RARA fusion as a recurrent cause of AML with APL characteristics
.
Blood Adv
.
2022
;
6
(
12
):
3590
-
3592
.
4.
Chen
X
,
Wang
F
,
Zhou
X
, et al
.
Torque teno mini virus driven childhood acute promyelocytic leukemia: the third case report and sequence analysis
.
Front Oncol
.
2022
;
12
:
1074913
.
5.
Chen
J
,
Zhou
X
,
Chen
X
, et al
.
Pediatric TTMV::RARA-positive relapsed acute promyelocytie leukemia responsive to venetoclax and achieving long remission after allogenic transplantation
.
Pediatr Blood Cancer
.
2023
;
70
(
12
):
e30665
.
6.
Chen
J
,
Zhou
X
,
Wang
Y
, et al
.
TTMV::RARA-driven myeloid sarcoma in pediatrics with germline SAMD9 mutation and relapsed with refractory acute promyelocytic leukemia
.
Int J Lab Hematol
.
2024
;
46
(
1
):
190
-
194
.
7.
Wang
L
,
Chen
J
,
Hou
B
, et al
.
Case report of pediatric TTMV-related acute promyelocytic leukemia with central nervous system infiltration and rapid accumulation of RARA-LBD mutations
.
Heliyon
.
2024
;
10
(
5
):
e27107
.
8.
Wang
Z
,
Chen
J
,
Meng
J
,
Zhao
M
,
Liu
H
,
Xiao
X
.
TTMV::RARA-positive acute promyelocytic leukemia with marrow necrosis and central nervous system involvement at disease recurrence
.
J Clin Exp Hematop
.
2024
;
64
(
3
):
237
-
241
.
9.
Lou
J
,
Zhang
Y
,
Tao
J
, et al
.
Infection-related pathway activation and vulnerability to arsenic trioxide in acute promyelocytic leukemia with TTMV::RARA
.
Leukemia
.
2025
;
39
(
2
):
490
-
494
.
10.
Xu
Q
,
Peng
Y
,
Sun
S
, et al
.
Acute promyelocytic leukemia with TTMV::RARA fusion potentially responds to all-trans retinoic acid/arsenic trioxide treatment
.
Haematologica
.
2025
;
110
(
6
):
1426
-
1431
.
11.
Zhou
X
,
Chen
X
,
Chen
J
, et al
.
Critical role of tripartite fusion and LBD truncation in certain RARA- and all RARG-related atypical APL
.
Blood
.
2024
;
144
(
14
):
1471
-
1485
.
12.
Zhou
X
,
Chen
X
,
Chen
J
, et al
.
The ingenious multiple efficacies of the integrated gene fragment of Torque Teno mini virus in orchestrating promyelocytic leukemogenesis via hijacking rara [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
1576
.
13.
Voso
MT
,
Guarnera
L
,
Lehmann
S
, et al
.
Acute promyelocytic leukemia: long-term outcomes from the HARMONY project
.
Blood
.
2025
;
145
(
2
):
234
-
243
.
14.
Zhang
X
,
Wu
S
,
Yang
J
, et al
.
Long-term retrospective study of retinoic acid combined with arsenic and chemotherapy for acute promyelocytic leukemia
.
Int J Hematol
.
2023
;
117
(
4
):
530
-
537
.
15.
Pertea
M
,
Pertea
GM
,
Antonescu
CM
,
Chang
TC
,
Mendell
JT
,
Salzberg
SL
.
StringTie enables improved reconstruction of a transcriptome from RNA-seq reads
.
Nat Biotechnol
.
2015
;
33
(
3
):
290
-
295
.
16.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
.
17.
Zhou
X
,
Nie
D
,
Zhang
Y
, et al
.
DNTT activation, TdT-aided gene length mutation, and better prognosis in ATG-based regimen allo-HSCT in AML
.
Mol Carcinog
.
2023
;
62
(
5
):
665
-
675
.
18.
Marx
V
.
Seeing data as t-SNE and UMAP do
.
Nat Methods
.
2024
;
21
(
6
):
930
-
933
.
19.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
43
):
15545
-
15550
.
20.
Chen
X
,
Yuan
L
,
Zhang
Y
, et al
.
Advances towards genome-based acute myeloid leukemia classification: a comparative analysis of WHO-HAEM4R, WHO-HAEM5, and International Consensus Classification
.
Am J Hematol
.
2024
;
99
(
5
):
824
-
835
.
21.
Robinson
JT
,
Thorvaldsdóttir
H
,
Winckler
W
, et al
.
Integrative genomics viewer
.
Nat Biotechnol
.
2011
;
29
(
1
):
24
-
26
.
22.
Lefkowitz
EJ
,
Dempsey
DM
,
Hendrickson
RC
,
Orton
RJ
,
Siddell
SG
,
Smith
DB
.
Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV)
.
Nucleic Acids Res
.
2018
;
46
(
D1
):
D708
-
D717
.
23.
Varsani
A
,
Kraberger
S
,
Opriessnig
T
, et al
.
Anelloviridae taxonomy update 2023
.
Arch Virol
.
2023
;
168
(
11
):
277
.
24.
Laubscher
F
,
Kaiser
L
,
Cordey
S
.
SCANellome V2: update of the primate anellovirus reference sequences database
.
Viruses
.
2024
;
16
(
9
):
1349
.
25.
Wang
XC
,
Wang
H
,
Tan
SD
,
Yang
SX
,
Shi
XF
,
Zhang
W
.
Viral metagenomics reveals diverse anelloviruses in bone marrow specimens from hematologic patients
.
J Clin Virol
.
2020
;
132
:
104643
.
26.
Cordey
S
,
Laubscher
F
,
Hartley
MA
, et al
.
Blood virosphere in febrile Tanzanian children
.
Emerg Microbes Infect
.
2021
;
10
(
1
):
982
-
993
.
27.
Katoh
K
,
Misawa
K
,
Kuma
K
,
Miyata
T
.
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform
.
Nucleic Acids Res
.
2002
;
30
(
14
):
3059
-
3066
.
28.
Kumar
S
,
Stecher
G
,
Li
M
,
Knyaz
C
,
Tamura
K
,
MEGA
X
.
MEGA X: molecular evolutionary genetics analysis across computing platforms
.
Mol Biol Evol
.
2018
;
35
(
6
):
1547
-
1549
.
29.
Letunic
I
,
Bork
P
.
Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool
.
Nucleic Acids Res
.
2024
;
52
(
W1
):
W78
-
W82
.
30.
Altschul
SF
,
Madden
TL
,
Schäffer
AA
, et al
.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
.
Nucleic Acids Res
.
1997
;
25
(
17
):
3389
-
3402
.
31.
Bailey
TL
,
Johnson
J
,
Grant
CE
,
Noble
WS
.
The MEME suite
.
Nucleic Acids Res
.
2015
;
43
(
W1
):
W39
-
W49
.
32.
Gupta
S
,
Stamatoyannopoulos
JA
,
Bailey
TL
,
Noble
WS
.
Quantifying similarity between motifs
.
Genome Biol
.
2007
;
8
(
2
):
R24
.
33.
Gao
X
,
Shang
K
,
Zhu
K
, et al
.
Nucleic-acid-triggered NADase activation of a short prokaryotic Argonaute
.
Nature
.
2024
;
625
(
7996
):
822
-
831
.
34.
Chen
Xue
,
Wang
Fang
,
Zhang
Yang
, et al
.
Fusion gene map of acute leukemia revealed by transcriptome sequencing of a consecutive cohort of 1000 cases in a single center
.
Blood Cancer J
.
2021
;
11
(
6
):
112
.
35.
Malik
S
,
Roeder
RG
.
Regulation of the RNA polymerase II pre-initiation complex by its associated coactivators
.
Nat Rev Genet
.
2023
;
24
(
11
):
767
-
782
.
36.
Zhang
Q
,
Ai
Y
,
Abdel-Wahab
O
.
Molecular impact of mutations in RNA splicing factors in cancer
.
Mol Cell
.
2024
;
84
(
19
):
3667
-
3680
.
37.
Rérolle
D
,
Wu
HC
,
de Thé
H
.
Acute promyelocytic leukemia, retinoic acid, and arsenic: a tale of dualities
.
Cold Spring Harb Perspect Med
.
2024
;
14
(
9
):
a041582
.
38.
Bhagwat
AS
,
Torres
L
,
Shestova
O
, et al
.
Cytokine-mediated CAR T therapy resistance in AML
.
Nat Med
.
2024
;
30
(
12
):
3697
-
3708
.
39.
Cui
Q
,
Qian
C
,
Xu
N
, et al
.
CD38-directed CAR-T cell therapy: a novel immunotherapy strategy for relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation
.
J Hematol Oncol
.
2021
;
14
(
1
):
82
.
40.
Sun
X
,
Wang
G
,
Zuo
S
,
Niu
Q
,
Chen
X
,
Feng
X
.
Preclinical evaluation of CD64 as a potential target for CAR-T-cell therapy for acute myeloid leukemia
.
J Immunother
.
2022
;
45
(
2
):
67
-
77
.
41.
Fu
L
,
Zhang
Z
,
Chen
Z
,
Fu
J
,
Hong
P
,
Feng
W
.
Gene mutations and targeted therapies of myeloid sarcoma
.
Curr Treat Options Oncol
.
2023
;
24
(
4
):
338
-
352
.
42.
Jang
SH
,
Chung
HY
.
MYC and PIM2 co-expression in mouse bone marrow cells readily establishes permanent myeloid cell lines that can induce lethal myeloid sarcoma in vivo
.
Mol Cells
.
2012
;
34
(
2
):
201
-
208
.
43.
Timmerman
AL
,
Schönert
ALM
,
van der Hoek
L
.
Anelloviruses versus human immunity: how do we control these viruses?
.
FEMS Microbiol Rev
.
2024
;
48
(
1
):
fuae005
.
44.
Liou
SH
,
Boggavarapu
R
,
Cohen
NR
, et al
.
Structure of anellovirus-like particles reveal a mechanism for immune evasion
.
Nat Commun
.
2024
;
15
(
1
):
7219
.
45.
Taylor
LJ
,
Keeler
EL
,
Bushman
FD
,
Collman
RG
.
The enigmatic roles of anelloviridae and redondoviridae in humans
.
Curr Opin Virol
.
2022
;
55
:
101248
.
46.
Kaczorowska
J
,
Cicilionytė
A
,
Timmerman
AL
, et al
.
Early-life colonization by anelloviruses in infants
.
Viruses
.
2022
;
14
(
5
):
865
.
47.
Kaczorowska
J
,
Timmerman
AL
,
Deijs
M
,
Kinsella
CM
,
Bakker
M
,
van der Hoek
L
.
Anellovirus evolution during long-term chronic infection
.
Virus Evol
.
2023
;
9
(
1
):
vead001
.
48.
Kaczorowska
J
,
Deijs
M
,
Klein
M
, et al
.
Diversity and long-term dynamics of human blood anelloviruses
.
J Virol
.
2022
;
96
(
11
):
e0010922
.
49.
Subramanian
S
,
Thoms
JAI
,
Huang
Y
, et al
.
Genome-wide transcription factor-binding maps reveal cell-specific changes in the regulatory architecture of human HSPCs
.
Blood
.
2023
;
142
(
17
):
1448
-
1462
.
50.
Hayashi
Y
,
Harada
Y
,
Harada
H
.
Myeloid neoplasms and clonal hematopoiesis from the RUNX1 perspective
.
Leukemia
.
2022
;
36
(
5
):
1203
-
1214
.
51.
Chen
Q
,
Wang
S
,
Zhang
J
, et al
.
JMJD1C forms condensate to facilitate a RUNX1-dependent gene expression program shared by multiple types of AML cells
.
Protein Cell
.
2025
;
16
(
5
):
338
-
364
.
You do not currently have access to this content.
Sign in via your Institution