• EMD mimics the architectural complexity of solid tumors, marked by diverse microenvironments, multiclonality, and TNFRSF17 and GPRC5D levels.

  • EMD shows infiltration of active T cells spatially confined to niches segregated from MM cells, potentially affecting the therapeutic response.

Abstract

Extramedullary disease (EMD) is a high-risk feature of multiple myeloma (MM) and remains a poor prognostic factor, even in the era of novel immunotherapies. Here, we applied spatial transcriptomics (RNA tomography for spatially resolved transcriptomics [tomo-seq] [n = 2] and 10x Visium [n = 12]) and single-cell RNA sequencing (n = 3) to a set of 14 EMD biopsies to dissect the 3-dimensional architecture of tumor cells and their microenvironment. Overall, infiltrating immune and stromal cells showed both intrapatient and interpatient variations, with no uniform distribution over the lesion. We observed substantial heterogeneity at the copy number level within plasma cells, including the emergence of new subclones in circumscribed areas of the tumor, which is consistent with genomic instability. We further identified the spatial expression differences between GPRC5D and TNFRSF17, 2 important antigens for bispecific antibody therapy. EMD masses were infiltrated by various immune cells, including T cells. Notably, exhausted TIM3+/PD-1+ T cells diffusely colocalized with MM cells, whereas functional and activated CD8+ T cells showed a focal infiltration pattern along with M1 macrophages in tumor-free regions. This segregation of fit and exhausted T cells was resolved in the case of response to T-cell–engaging bispecific antibodies. MM and microenvironment cells were embedded in a complex network that influenced immune activation and angiogenesis, and oxidative phosphorylation represented the major metabolic program within EMD lesions. In summary, spatial transcriptomics has revealed a multicellular ecosystem in EMD with checkpoint inhibition and dual targeting as potential new therapeutic avenues.

1.
Radbruch
A
,
Muehlinghaus
G
,
Luger
EO
, et al
.
Competence and competition: the challenge of becoming a long-lived plasma cell
.
Nat Rev Immunol
.
2006
;
6
(
10
):
741
-
750
.
2.
Boyle
EM
,
Davies
FE
,
Leleu
X
,
Morgan
GJ
.
Understanding the multiple biological aspects leading to myeloma
.
Haematologica
.
2014
;
99
(
4
):
605
-
612
.
3.
Bladé
J
,
Beksac
M
,
Caers
J
, et al
.
Extramedullary disease in multiple myeloma: a systematic literature review
.
Blood Cancer J
.
2022
;
12
(
3
):
45
.
4.
Zeiser
R
,
Deschler
B
,
Bertz
H
,
Finke
J
,
Engelhardt
M
.
Extramedullary vs medullary relapse after autologous or allogeneic hematopoietic stem cell transplantation (HSCT) in multiple myeloma (MM) and its correlation to clinical outcome
.
Bone Marrow Transplant
.
2004
;
34
(
12
):
1057
-
1065
.
5.
Rosiñol
L
,
Beksac
M
,
Zamagni
E
, et al
.
Expert review on soft-tissue plasmacytomas in multiple myeloma: definition, disease assessment and treatment considerations
.
Br J Haematol
.
2021
;
194
(
3
):
496
-
507
.
6.
Bhutani
M
,
Foureau
DM
,
Atrash
S
,
Voorhees
PM
,
Usmani
SZ
.
Extramedullary multiple myeloma
.
Leukemia
.
2020
;
34
:
1
-
20
.
7.
Moreau
P
,
Garfall
AL
,
van de Donk
NWCJ
, et al
.
Teclistamab in relapsed or refractory multiple myeloma
.
N Engl J Med
.
2022
;
387
(
6
):
495
-
505
.
8.
Munshi
NC
,
Hege
K
,
San-Miguel
J
.
Idecabtagene vicleucel in relapsed myeloma. Reply
.
N Engl J Med
.
2021
;
384
(
24
):
2357
-
2358
.
9.
Lesokhin
AM
,
Tomasson
MH
,
Arnulf
B
, et al
.
Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results
.
Nat Med
.
2023
;
29
(
9
):
2259
-
2267
.
10.
Jelinek
T
,
Sevcikova
T
,
Zihala
D
, et al
.
Limited efficacy of daratumumab in multiple myeloma with extramedullary disease
.
Leukemia
.
2022
;
36
(
1
):
288
-
291
.
11.
Stork
M
,
Sevcikova
S
,
Minarik
J
, et al
.
Identification of patients at high risk of secondary extramedullary multiple myeloma development
.
Br J Haematol
.
2022
;
196
(
4
):
954
-
962
.
12.
Usmani
SZ
,
Heuck
C
,
Mitchell
A
, et al
.
Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents
.
Haematologica
.
2012
;
97
(
11
):
1761
-
1767
.
13.
Bansal
R
,
Rakshit
S
,
Kumar
S
.
Extramedullary disease in multiple myeloma
.
Blood Cancer J
.
2021
;
11
(
9
):
161
.
14.
McAvera
R
,
Quinn
J
,
Murphy
P
,
Glavey
S
.
Genetic abnormalities in extramedullary multiple myeloma
.
Int J Mol Sci
.
2023
;
24
(
14
):
11259
.
15.
Rasche
L
,
Chavan
SS
,
Stephens
OW
, et al
.
Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing
.
Nat Commun
.
2017
;
8
(
1
):
268
.
16.
AbdulJabbar
K
,
Raza
SEA
,
Rosenthal
R
, et al
.
Geospatial immune variability illuminates differential evolution of lung adenocarcinoma
.
Nat Med
.
2020
;
26
(
7
):
1054
-
1062
.
17.
Church
SE
,
Bifulco
C
,
Van De Ven
R
,
Luke
JJ
. Mechanisms of Lymphocyte Exclusion in the Tumor Microenvironment.
Frontiers Media SA
;
2022
.
18.
Mitra
A
,
Andrews
MC
,
Roh
W
, et al
.
Spatially resolved analyses link genomic and immune diversity and reveal unfavorable neutrophil activation in melanoma
.
Nat Commun
.
2020
;
11
(
1
):
1839
.
19.
Tanaka
M
,
Lum
L
,
Hu
K
, et al
.
Tumor cell heterogeneity drives spatial organization of the intratumoral immune response in squamous cell skin carcinoma
.
bioRxiv
.
Preprint posted online 26 April 2023
.
20.
Nirmal
AJ
,
Maliga
Z
,
Vallius
T
, et al
.
The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution
.
Cancer Discov
.
2022
;
12
(
6
):
1518
-
1541
.
21.
Li
J
,
Byrne
KT
,
Yan
F
, et al
.
Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy
.
Immunity
.
2018
;
49
(
1
):
178
-
193.e7
.
22.
Truger
MS
,
Duell
J
,
Zhou
X
, et al
.
Single- and double-hit events in genes encoding immune targets before and after T-cell–engaging antibody therapy in MM
.
Blood Adv
.
2021
;
5
(
19
):
3794
-
3798
.
23.
Babraham Bioinformatics
.
FastQC A Quality Control tool for High Throughput Sequence Data
. Accessed 7 August 2024. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
24.
Dobin
A
,
Davis
CA
,
Schlesinger
F
, et al
.
STAR: ultrafast universal RNA-seq aligner
.
Bioinformatics
.
2013
;
29
(
1
):
15
-
21
.
25.
26.
Yoshihara
K
,
Shahmoradgoli
M
,
Martínez
E
, et al
.
Inferring tumour purity and stromal and immune cell admixture from expression data
.
Nat Commun
.
2013
;
4
:
2612
.
27.
ENCODE Project Consortium
.
An integrated encyclopedia of DNA elements in the human genome
.
Nature
.
2012
;
489
(
7414
):
57
-
74
.
28.
Martens
JHA
,
Stunnenberg
HG
.
BLUEPRINT: mapping human blood cell epigenomes
.
Haematologica
.
2013
;
98
(
10
):
1487
-
1489
.
29.
MarianSchoen/DMC. GitHub
. Accessed 7 August 2024. https://github.com/MarianSchoen/DMC.
30.
Newman
AM
,
Steen
CB
,
Liu
CL
, et al
.
Determining cell type abundance and expression from bulk tissues with digital cytometry
.
Nat Biotechnol
.
2019
;
37
(
7
):
773
-
782
.
31.
Sturm
G
,
Finotello
F
,
List
M
.
Immunedeconv: an R package for unified access to computational methods for estimating immune cell fractions from bulk RNA-sequencing data
.
Methods Mol Biol
.
2020
;
2120
:
223
-
232
.
32.
Support-official 10x Genomics Support. 10x Genomics
. Accessed 7 August 2024. https://www.10xgenomics.com/support.
33.
McGinnis
CS
,
Murrow
LM
,
Gartner
ZJ
.
DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors
.
Cell Syst
.
2019
;
8
(
4
):
329
-
337.e4
.
34.
Hao
Y
,
Hao
S
,
Andersen-Nissen
E
, et al
.
Integrated analysis of multimodal single-cell data
.
Cell
.
2021
;
184
(
13
):
3573
-
3587.e29
.
35.
Korsunsky
I
,
Millard
N
,
Fan
J
, et al
.
Fast, sensitive and accurate integration of single-cell data with Harmony
.
Nat Methods
.
2019
;
16
(
12
):
1289
-
1296
.
36.
Wu
T
,
Hu
E
,
Xu
S
, et al
.
clusterProfiler 4.0: a universal enrichment tool for interpreting omics data
.
Innovation (Camb)
.
2021
;
2
(
3
):
100141
.
37.
scCustomize
. Accessed 7 August 2024. https://samuel-marsh.github.io/scCustomize.
38.
Kleshchevnikov
V
,
Shmatko
A
,
Dann
E
, et al
.
Cell2location maps fine-grained cell types in spatial transcriptomics
.
Nat Biotechnol
.
2022
;
40
(
5
):
661
-
671
.
39.
Kleshchevnikov
V
,
Shmatko
A
,
Dann
E
, et al
.
Comprehensive mapping of tissue cell architecture via integrated single cell and spatial transcriptomics
.
bioRxiv
.
Preprint posted online 17 November 2020
https://doi.org/10.1101/2020.11.15.378125.
40.
broadinstitute/infercnv: Inferring CNV From Single-Cell RNA-Seq. GitHub
. Accessed 7 August 2024. https://github.com/broadinstitute/infercnv.
41.
findlaycopley/PlotCNV: An R Package to Create a Pretty Copy Number Variant Plot From a Segments File. GitHub
. Accessed 7 August 2024. https://github.com/findlaycopley/PlotCNV.
42.
Kruse
F
,
Junker
J P
,
van Oudenaarden
A
,
Bakkers
J
.
Tomo-seq: a method to obtain genome-wide expression data with spatial resolution
.
Methods Cell Biol
.
2016
;
135
:
299
-
307
.
43.
Traag
VA
,
Waltman
L
,
van Eck
NJ
.
From Louvain to Leiden: guaranteeing well-connected communities
.
Sci Rep
.
2019
;
9
(
1
):
5233
.
44.
Robinson
MH
,
Villa
NY
,
Jaye
DL
, et al
.
Regulation of antigen-specific T-cell infiltration and spatial architecture in multiple myeloma and premalignancy
.
J Clin Invest
.
2023
;
133
(
15
):
e167629
.
45.
Erickson
A
,
He
M
,
Berglund
E
, et al
.
Spatially resolved clonal copy number alterations in benign and malignant tissue
.
Nature
.
2022
;
608
(
7922
):
360
-
367
.
46.
Zhao
T
,
Chiang
ZD
,
Morriss
JW
, et al
.
Spatial genomics enables multi-modal study of clonal heterogeneity in tissues
.
Nature
.
2022
;
601
(
7891
):
85
-
91
.
47.
Liu
F
,
Shi
F
,
Yu
Z
.
Inferring single-cell copy number profiles through cross-cell segmentation of read counts
.
BMC Genomics
.
2024
;
25
(
1
):
25
.
48.
Valković
T
,
Damić
MS
,
Valković
F
,
Jonjić
N
.
Angiogenesis and osteopontin expression in paraskeletal myeloma with plasmablastic morphology and aggressive clinical course: a report of two cases
.
J Cancer Metastasis Treat
.
2022
;
8
:
16
.
49.
Palta
A
,
Kaur
M
,
Tahlan
A
,
Dimri
K
.
Evaluation of angiogenesis in multiple myeloma by VEGF immunoexpression and microvessel density
.
J Lab Physicians
.
2020
;
12
(
1
):
38
-
43
.
50.
Solimando
AG
,
Da Vià
MC
,
Leone
P
, et al
.
Halting the vicious cycle within the multiple myeloma ecosystem: blocking JAM-A on bone marrow endothelial cells restores angiogenic homeostasis and suppresses tumor progression
.
Haematologica
.
2021
;
106
(
7
):
1943
-
1956
.
51.
Jelinek
T
,
Zihala
D
,
Sevcikova
T
, et al
.
Beyond the marrow: insights from comprehensive next-generation sequencing of extramedullary multiple myeloma tumors
.
Leukemia
.
2024
;
38
(
6
):
1323
-
1333
.
52.
Liu
Y-T
,
Sun
Z-J
.
Turning cold tumors into hot tumors by improving T-cell infiltration
.
Theranostics
.
2021
;
11
:
5365
-
5386
.
53.
Kao
L-P
,
Morad
SAF
,
Davis
TS
, et al
.
Chemotherapy selection pressure alters sphingolipid composition and mitochondrial bioenergetics in resistant HL-60 cells
.
J Lipid Res
.
2019
;
60
(
9
):
1590
-
1602
.
54.
Morad
SAF
,
Cabot
MC
.
Ceramide-orchestrated signalling in cancer cells
.
Nat Rev Cancer
.
2013
;
13
(
1
):
51
-
65
.
55.
Guièze
R
,
Liu
VM
,
Rosebrock
D
, et al
.
Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies
.
Cancer Cell
.
2019
;
36
(
4
):
369
-
384.e13
.
56.
Lee
K-M
,
Giltnane
JM
,
Balko
JM
, et al
.
MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation
.
Cell Metab
.
2017
;
26
(
4
):
633
-
647.e7
.
57.
Vellinga
TT
,
Borovski
T
,
de Boer
VCJ
, et al
.
SIRT1/PGC1α-dependent increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer
.
Clin Cancer Res
.
2015
;
21
(
12
):
2870
-
2879
.
58.
Matassa
DS
,
Amoroso
MR
,
Lu
H
, et al
.
Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer
.
Cell Death Differ
.
2016
;
23
(
9
):
1542
-
1554
.
59.
Zhao
Z
,
Mei
Y
,
Wang
Z
,
He
W
.
The effect of oxidative phosphorylation on cancer drug resistance
.
Cancers
.
2022
;
15
(
1
):
62
.
60.
Camus
M
,
Tosolini
M
,
Mlecnik
B
, et al
.
Coordination of intratumoral immune reaction and human colorectal cancer recurrence
.
Cancer Res
.
2009
;
69
(
6
):
2685
-
2693
.
61.
Galon
J
,
Bruni
D
.
Approaches to treat immune hot, altered and cold tumours with combination immunotherapies
.
Nat Rev Drug Discov
.
2019
;
18
(
3
):
197
-
218
.
62.
Dhodapkar
MV
.
Immune status and selection of patients for immunotherapy in myeloma: a proposal
.
Blood Adv
.
2024
;
8
(
10
):
2424
-
2432
.
63.
Kim
GB
,
Riley
JL
,
Levine
BL
.
Engineering T-cells to survive and thrive in the hostile tumor microenvironment
.
Curr Opin Biomed Eng
.
2022
;
21
:
100360
.
64.
Elia
I
,
Haigis
MC
.
Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism
.
Nat Metab
.
2021
;
3
(
1
):
21
-
32
.
65.
Fourcade
J
,
Sun
Z
,
Benallaoua
M
, et al
.
Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T-cell dysfunction in melanoma patients
.
J Exp Med
.
2010
;
207
(
10
):
2175
-
2186
.
66.
Gao
X
,
Zhu
Y
,
Li
G
, et al
.
TIM-3 expression characterizes regulatory T-cells in tumor tissues and is associated with lung cancer progression
.
PLoS One
.
2012
;
7
(
2
):
e30676
.
67.
Das
M
,
Zhu
C
,
Kuchroo
VK
.
Tim-3 and its role in regulating anti-tumor immunity
.
Immunol Rev
.
2017
;
276
(
1
):
97
-
111
.
68.
Mateos
M-V
,
Blacklock
H
,
Schjesvold
F
, et al
.
Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): a randomised, open-label, phase 3 trial
.
Lancet Haematol
.
2019
;
6
(
9
):
e459
-
e469
.
69.
Mateos
M-V
,
Morillo
D
,
Gatt
M
, et al
.
S190: first results from the redirectt-1 study with teclistamab (tec) + talquetamab (Tal) simultaneously targeting bcma and gprc5d in patients (pts) with relapsed/refractory multiple myeloma (rrmm)
.
Hemasphere
.
2023
;
7
(
S3
):
e15362d7
.
70.
John
L
,
Poos
AM
,
Brobeil
A
, et al
.
Resolving the spatial architecture of myeloma and its microenvironment at the single-cell level
.
Nat Commun
.
2023
;
14
(
1
):
5011
.
71.
Ricciuti
B
,
Lamberti
G
,
Puchala
SR
, et al
.
Genomic and immunophenotypic landscape of acquired resistance to PD-(L)1 blockade in non-small-cell lung cancer
.
J Clin Oncol
.
2024
;
42
(
11
):
1311
-
1321
.
You do not currently have access to this content.
Sign in via your Institution