• The chromatin reader protein SGF29 is a novel epigenetic vulnerability in AML.

  • SGF29 regulates AML oncogene transcription and KAT2A chromatin localization in AML.

Abstract

Aberrant expression of stem cell–associated genes is a common feature in acute myeloid leukemia (AML) and is linked to leukemic self-renewal and therapy resistance. Using AF10-rearranged leukemia as a prototypical example of the recurrently activated “stemness” network in AML, we screened for chromatin regulators that sustain its expression. We deployed a CRISPR-Cas9 screen with a bespoke domain-focused library and identified several novel chromatin-modifying complexes as regulators of the TALE domain transcription factor MEIS1, a key leukemia stem cell (LSC)–associated gene. CRISPR droplet sequencing revealed that many of these MEIS1 regulators coordinately controlled the transcription of several AML oncogenes. In particular, we identified a novel role for the Tudor-domain–containing chromatin reader protein SGF29 in the transcription of AML oncogenes. Furthermore, SGF29 deletion impaired leukemogenesis in models representative of multiple AML subtypes in multiple AML subtype models. Our studies reveal a novel role for SGF29 as a nononcogenic dependency in AML and identify the SGF29 Tudor domain as an attractive target for drug discovery.

1.
Döhner
H
,
Weisdorf
DJ
,
Bloomfield
CD
.
Acute myeloid leukemia
.
N Engl J Med
.
2015
;
373
(
12
):
1136
-
1152
.
2.
Papaemmanuil
E
,
Döhner
H
,
Campbell
PJ
.
Genomic classification in acute myeloid leukemia
.
N Engl J Med
.
2016
;
375
(
9
):
900
-
901
.
3.
Xiang
P
,
Yang
X
,
Escano
L
, et al
.
Elucidating the importance and regulation of key enhancers for human MEIS1 expression
.
Leukemia
.
2022
;
36
(
8
):
1980
-
1989
.
4.
Bernt
KM
,
Zhu
N
,
Sinha
AU
, et al
.
MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L
.
Cancer Cell
.
2011
;
20
(
1
):
66
-
78
.
5.
Chang
MJ
,
Wu
H
,
Achille
NJ
, et al
.
Histone H3 lysine 79 methyltransferase Dot1 is required for immortalization by MLL oncogenes
.
Cancer Res
.
2010
;
70
(
24
):
10234
-
10242
.
6.
Daigle
SR
,
Olhava
EJ
,
Therkelsen
CA
, et al
.
Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor
.
Cancer Cell
.
2011
;
20
(
1
):
53
-
65
.
7.
Abramovich
C
,
Pineault
N
,
Ohta
H
,
Humphries
RK
.
Hox genes: from leukemia to hematopoietic stem cell expansion
.
Ann N Y Acad Sci
.
2005
;
1044
(
1
):
109
-
116
.
8.
Argiropoulos
B
,
Humphries
RK
.
Hox genes in hematopoiesis and leukemogenesis
.
Oncogene
.
2007
;
26
(
47
):
6766
-
6776
.
9.
Alharbi
RA
,
Pettengell
R
,
Pandha
HS
,
Morgan
R
.
The role of HOX genes in normal hematopoiesis and acute leukemia
.
Leukemia
.
2013
;
27
(
5
):
1000
-
1008
.
10.
Collins
CT
,
Hess
JL
.
Deregulation of the HOXA9/MEIS1 axis in acute leukemia
.
Curr Opin Hematol
.
2016
;
23
(
4
):
354
-
361
.
11.
Spencer
DH
,
Young
MA
,
Lamprecht
TL
, et al
.
Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells
.
Leukemia
.
2015
;
29
(
6
):
1279
-
1289
.
12.
Erb
MA
,
Scott
TG
,
Li
BE
, et al
.
Transcription control by the ENL YEATS domain in acute leukaemia
.
Nature
.
2017
;
543
(
7644
):
270
-
274
.
13.
Wan
L
,
Wen
H
,
Li
Y
, et al
.
ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia
.
Nature
.
2017
;
543
(
7644
):
265
-
269
.
14.
Wang
GG
,
Cai
L
,
Pasillas
MP
,
Kamps
MP
.
NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis
.
Nat Cell Biol
.
2007
;
9
(
7
):
804
-
812
.
15.
Caudell
D
,
Zhang
Z
,
Chung
YJ
,
Aplan
PD
.
Expression of a CALM-AF10 fusion gene leads to Hoxa cluster overexpression and acute leukemia in transgenic mice
.
Cancer Res
.
2007
;
67
(
17
):
8022
-
8031
.
16.
DiMartino
JF
,
Ayton
PM
,
Chen
EH
,
Naftzger
CC
,
Young
BD
,
Cleary
ML
.
The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10
.
Blood
.
2002
;
99
(
10
):
3780
-
3785
.
17.
Thorsteinsdottir
U
,
Mamo
A
,
Kroon
E
, et al
.
Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion
.
Blood
.
2002
;
99
(
1
):
121
-
129
.
18.
Kroon
E
,
Krosl
J
,
Thorsteinsdottir
U
,
Baban
S
,
Buchberg
AM
,
Sauvageau
G
.
Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b
.
EMBO J
.
1998
;
17
(
13
):
3714
-
3725
.
19.
Wong
P
,
Iwasaki
M
,
Somervaille
TC
,
So
CW
,
Cleary
ML
.
Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential
.
Genes Dev
.
2007
;
21
(
21
):
2762
-
2774
.
20.
Barbosa
K
,
Deshpande
A
,
Chen
BR
, et al
.
Acute myeloid leukemia driven by the CALM-AF10 fusion gene is dependent on BMI1
.
Exp Hematol
.
2019
;
74
:
42
-
51.e3
.
21.
Caudell
D
,
Aplan
PD
.
The role of CALM-AF10 gene fusion in acute leukemia
.
Leukemia
.
2008
;
22
(
4
):
678
-
685
.
22.
Xiang
P
,
Wei
W
,
Hofs
N
, et al
.
A knock-in mouse strain facilitates dynamic tracking and enrichment of MEIS1
.
Blood Adv
.
2017
;
1
(
24
):
2225
-
2235
.
23.
Shi
J
,
Wang
E
,
Milazzo
JP
,
Wang
Z
,
Kinney
JB
,
Vakoc
CR
.
Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains
.
Nat Biotechnol
.
2015
;
33
(
6
):
661
-
667
.
24.
Wang
B
,
Wang
M
,
Zhang
W
, et al
.
Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute
.
Nat Protoc
.
2019
;
14
(
3
):
756
-
780
.
25.
Li
W
,
Köster
J
,
Xu
H
, et al
.
Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR
.
Genome Biol
.
2015
;
16
:
281
.
26.
Okada
Y
,
Feng
Q
,
Lin
Y
, et al
.
hDOT1L links histone methylation to leukemogenesis
.
Cell
.
2005
;
121
(
2
):
167
-
178
.
27.
Jo
SY
,
Granowicz
EM
,
Maillard
I
,
Thomas
D
,
Hess
JL
.
Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation
.
Blood
.
2011
;
117
(
18
):
4759
-
4768
.
28.
Deshpande
AJ
,
Deshpande
A
,
Sinha
AU
, et al
.
AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes
.
Cancer Cell
.
2014
;
26
(
6
):
896
-
908
.
29.
MacPherson
L
,
Anokye
J
,
Yeung
MM
, et al
.
HBO1 is required for the maintenance of leukaemia stem cells
.
Nature
.
2020
;
577
(
7789
):
266
-
270
.
30.
Takahashi
S
,
Kanai
A
,
Okuda
H
, et al
.
HBO1-MLL interaction promotes AF4/ENL/P-TEFb-mediated leukemogenesis
.
Elife
.
2021
;
10
:
e65872
.
31.
Szklarczyk
D
,
Kirsch
R
,
Koutrouli
M
, et al
.
The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest
.
Nucleic Acids Res
.
2023
;
51
(
D1
):
D638
-
D646
.
32.
Datlinger
P
,
Rendeiro
AF
,
Schmidl
C
, et al
.
Pooled CRISPR screening with single-cell transcriptome readout
.
Nat Methods
.
2017
;
14
(
3
):
297
-
301
.
33.
Kustatscher
G
,
Wills
KLH
,
Furlan
C
,
Rappsilber
J
.
Chromatin enrichment for proteomics
.
Nat Protoc
.
2014
;
9
(
9
):
2090
-
2099
.
34.
Bian
C
,
Xu
C
,
Ruan
J
, et al
.
Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation
.
EMBO J
.
2011
;
30
(
14
):
2829
-
2842
.
35.
Vermeulen
M
,
Eberl
HC
,
Matarese
F
, et al
.
Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers
.
Cell
.
2010
;
142
(
6
):
967
-
980
.
36.
Vosnakis
N
,
Koch
M
,
Scheer
E
, et al
.
Coactivators and general transcription factors have two distinct dynamic populations dependent on transcription
.
EMBO J
.
2017
;
36
(
18
):
2710
-
2725
.
37.
Espinola-Lopez
JM
,
Tan
S
.
The Ada2/Ada3/Gcn5/Sgf29 histone acetyltransferase module
.
Biochim Biophys Acta Gene Regul Mech
.
2021
;
1864
(
2
):
194629
.
38.
Domingues
AF
,
Kulkarni
R
,
Giotopoulos
G
, et al
.
Loss of Kat2a enhances transcriptional noise and depletes acute myeloid leukemia stem-like cells
.
Elife
.
2020
;
9
:
e51754
.
39.
Balasubramanian
R
,
Pray-Grant
MG
,
Selleck
W
,
Grant
PA
,
Tan
S
.
Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation
.
J Biol Chem
.
2002
;
277
(
10
):
7989
-
7995
.
40.
Bahrami
E
,
Schmid
JP
,
Jurinovic
V
, et al
.
Combined proteomics and CRISPR‒Cas9 screens in PDX identify ADAM10 as essential for leukemia in vivo
.
Mol Cancer
.
2023
;
22
:
107
.
41.
Sanders
SL
,
Jennings
J
,
Canutescu
A
,
Link
AJ
,
Weil
PA
.
Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry
.
Mol Cell Biol
.
2002
;
22
(
13
):
4723
-
4738
.
42.
Baker
SP
,
Grant
PA
.
The SAGA continues: expanding the cellular role of a transcriptional co-activator complex
.
Oncogene
.
2007
;
26
(
37
):
5329
-
5340
.
43.
Rodríguez-Navarro
S
.
Insights into SAGA function during gene expression
.
EMBO Rep
.
2009
;
10
(
8
):
843
-
850
.
44.
Ringel
AE
,
Cieniewicz
AM
,
Taverna
SD
,
Wolberger
C
.
Nucleosome competition reveals processive acetylation by the SAGA HAT module
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
40
):
E5461
-
E5470
.
45.
Soffers
JHM
,
Workman
JL
.
The SAGA chromatin-modifying complex: the sum of its parts is greater than the whole
.
Genes Dev
.
2020
;
34
(
19-20
):
1287
-
1303
.
46.
Tzelepis
K
,
Koike-Yusa
H
,
De Braekeleer
E
, et al
.
A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia
.
Cell Rep
.
2016
;
17
(
4
):
1193
-
1205
.
47.
Han
X
,
Chen
J
.
KAT2A affects tumor metabolic reprogramming in colon cancer progression through epigenetic activation of E2F1
.
Hum Cell
.
2022
;
35
(
4
):
1140
-
1158
.
48.
Arede
L
,
Foerner
E
,
Wind
S
, et al
.
KAT2A complexes ATAC and SAGA play unique roles in cell maintenance and identity in hematopoiesis and leukemia
.
Blood Adv
.
2022
;
6
(
1
):
165
-
180
.
49.
Kurabe
N
,
Katagiri
K
,
Komiya
Y
, et al
.
Deregulated expression of a novel component of TFTC/STAGA histone acetyltransferase complexes, rat SGF29, in hepatocellular carcinoma: possible implication for the oncogenic potential of c-Myc
.
Oncogene
.
2007
;
26
(
38
):
5626
-
5634
.
50.
Long
L
,
Wei
J
,
Lim
SA
, et al
.
CRISPR screens unveil signal hubs for nutrient licensing of T cell immunity
.
Nature
.
2021
;
600
(
7888
):
308
-
313
.
51.
Filippakopoulos
P
,
Qi
J
,
Picaud
S
, et al
.
Selective inhibition of BET bromodomains
.
Nature
.
2010
;
468
(
7327
):
1067
-
1073
.
52.
Cipriano
A
,
Sbardella
G
,
Ciulli
A
.
Targeting epigenetic reader domains by chemical biology
.
Curr Opin Chem Biol
.
2020
;
57
:
82
-
94
.
53.
Arrowsmith
CH
,
Schapira
M
.
Targeting non-bromodomain chromatin readers
.
Nat Struct Mol Biol
.
2019
;
26
(
10
):
863
-
869
.
54.
Mio
C
,
Bulotta
S
,
Russo
D
,
Damante
G
.
Reading cancer: chromatin readers as druggable targets for cancer treatment
.
Cancers (Basel)
.
2019
;
11
(
1
):
61
.
55.
Liu
Y
,
Li
Q
,
Alikarami
F
, et al
.
Small-molecule inhibition of the acyl-lysine reader ENL as a strategy against acute myeloid leukemia
.
Cancer Discov
.
2022
;
12
(
11
):
2684
-
2709
.
56.
Asiaban
JN
,
Milosevich
N
,
Chen
E
, et al
.
Cell-based ligand discovery for the ENL YEATS domain
.
ACS Chem Biol
.
2020
;
15
(
4
):
895
-
903
.
57.
Garnar-Wortzel
L
,
Bishop
TR
,
Kitamura
S
, et al
.
Chemical inhibition of ENL/AF9 YEATS domains in acute leukemia
.
2020 ACS Cent Sci
.
2021
;
7
:
815
-
830
.
You do not currently have access to this content.
Sign in via your Institution