• We demonstrate a favorable exposure-response relationship between the Ctrough_1 of abatacept and a lower risk of gr 2or 4 aGVHD.

  • No association was found between abatacept Ctrough_1 and key safety outcomes, including relapse, cytomegalovirus, or Epstein-Barr virus viremia.

In the ABA2 study, the T-cell costimulation blockade agent, abatacept, was safe and effective in preventing acute graft-versus-host disease (aGVHD) after unrelated-donor hematopoietic cell transplant (HCT), leading to US Food and Drug Administration approval. Here, we performed a determination of abatacept pharmacokinetics (PK), which enabled an examination of how abatacept exposure-response relationships affected clinical outcomes. We performed a population PK analysis of IV abatacept using nonlinear mixed-effect modeling and assessed the association between abatacept exposure and key transplant outcomes. We tested the association between the trough after dose 1 (Ctrough_1) and grade (GR) 2 or 4 aGVHD (GR2-4 aGVHD) through day +100. An optimal Ctrough_1 threshold was identified via recursive partitioning and classification tree analysis. This demonstrated that abatacept PK was characterized by a 2-compartment model with first-order elimination. The ABA2 dosing regimen was based on previous work targeting a steady-state abatacept trough of 10 μg/mL. However, a higher Ctrough_1 (≥39 μg/mL, attained in ∼60% of patients on ABA2) was associated with a favorable GR2-4 aGVHD risk (hazard ratio, 0.35; 95% confidence interval, 0.19-0.65; P < .001), with a Ctrough_1 <39 μg/mL associated with GR2-4 aGVHD risk indistinguishable from placebo (P = .37). Importantly, no significant association was found between Ctrough_1 and key safety indicators, including relapse, and cytomegalovirus or Epstein-Barr virus viremia. These data demonstrate that a higher abatacept Ctrough_1 (≥39 μg/mL) was associated with a favorable GR2-4 aGVHD risk, without any observed exposure-toxicity relationships. This trial was registered at www.clinicaltrials.gov as #NCT01743131.

1.
D'Souza
A
,
Fretham
C
,
Lee
SJ
, et al
.
Current use of and trends in hematopoietic cell transplantation in the United States
.
Biol Blood Marrow Transplant
.
2020
. ;
26
(
8
):
e177
-
e182
.
2.
Watkins
B
,
Qayed
M
,
McCracken
C
, et al
.
Phase II trial of costimulation blockade with abatacept for prevention of acute GVHD
.
J Clin Oncol
.
2021
. ;
39
(
17
):
1865
-
1877
.
3.
Kean
LS
,
Burns
LJ
,
Kou
TD
, et al
.
Improved overall survival of patients treated with abatacept in combination with a calcineurin inhibitor and methotrexate following 7/8 HLA-matched unrelated allogeneic hematopoietic stem cell transplantation: analysis of the Center for International Blood and Marrow Transplant Research Database [abstract]
.
Blood
.
2021
. ;
138
(
suppl 1
):
3912
.
4.
Orencia (abatacept). Package insert. 2021
. Accessed 1 July 2023. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125118s240lbl.pdf.
5.
Moreland
L
,
Bate
G
,
Kirkpatrick
P
.
Abatacept
.
Nat Rev Drug Discov
.
2006
. ;
5
(
3
):
185
-
186
.
6.
Bluestone
JA
,
St Clair
EW
,
Turka
LA
.
CTLA4Ig: bridging the basic immunology with clinical application
.
Immunity
.
2006
. ;
24
(
3
):
233
-
238
.
7.
Linsley
PS
,
Nadler
SG
.
The clinical utility of inhibiting CD28-mediated costimulation
.
Immunol Rev
.
2009
. ;
229
(
1
):
307
-
321
.
8.
Kremer
JM
,
Westhovens
R
,
Leon
M
, et al
.
Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig
.
N Engl J Med
.
2003
. ;
349
(
20
):
1907
-
1915
.
9.
Ruperto
N
,
Lovell
DJ
,
Quartier
P
, et al
.
Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial
.
Lancet
.
2008
. ;
372
(
9636
):
383
-
391
.
10.
Koura
DT
,
Horan
JT
,
Langston
AA
, et al
.
In vivo T cell costimulation blockade with abatacept for acute graft-versus-host disease prevention: a first-in-disease trial
.
Biol Blood Marrow Transplant
.
2013
. ;
19
(
11
):
1638
-
1649
.
11.
Vincenti
F
,
Larsen
C
,
Durrbach
A
, et al
.
Costimulation blockade with belatacept in renal transplantation
.
N Engl J Med
.
2005
. ;
353
(
8
):
770
-
781
.
12.
Li
X
,
Roy
A
,
Murthy
B
.
Population pharmacokinetics and exposure-response relationship of intravenous and subcutaneous abatacept in patients with rheumatoid arthritis
.
J Clin Pharmacol
.
2019
. ;
59
(
2
):
245
-
257
.
13.
Gandhi
Y
,
Passarell
JA
,
Roy
A
,
Murthy
B
.
Model-based selection and recommendation for subcutaneous abatacept dose in patients with polyarticular juvenile idiopathic arthritis
.
J Clin Pharmacol
.
2021
. ;
61
(
5
):
688
-
699
.
14.
Hasegawa
M
,
Imai
Y
,
Hiraoka
M
,
Ito
K
,
Roy
A
.
Model-based determination of abatacept exposure in support of the recommended dose for Japanese rheumatoid arthritis patients
.
J Pharmacokinet Pharmacodyn
.
2011
. ;
38
(
6
):
803
-
832
.
15.
Qayed
M
,
Watkins
B
,
Gillespie
S
, et al
.
Abatacept for GVHD prophylaxis can reduce racial disparities by abrogating the impact of mismatching in unrelated donor stem cell transplantation
.
Blood Adv
.
2022
. ;
6
(
3
):
746
-
749
.
16.
Bauer
RJ
.
NONMEM tutorial part I: description of commands and options, with simple examples of population analysis
.
CPT Pharmacometrics Syst Pharmacol
.
2019
. ;
8
(
8
):
525
-
537
.
17.
Dosne
AG
,
Bergstrand
M
,
Harling
K
,
Karlsson
MO
.
Improving the estimation of parameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling
.
J Pharmacokinet Pharmacodyn
.
2016
. ;
43
(
6
):
583
-
596
.
18.
Bergstrand
M
,
Hooker
AC
,
Wallin
JE
,
Karlsson
MO
.
Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models
.
AAPS J
.
2011
. ;
13
(
2
):
143
-
151
.
19.
Breiman
L
.
Bagging predictors
.
Mach Learn
.
1996
. ;
24
(
2
):
123
-
140
.
20.
Storek
J
,
Wells
D
,
Dawson
MA
,
Storer
B
,
Maloney
DG
.
Factors influencing B lymphopoiesis after allogeneic hematopoietic cell transplantation
.
Blood
.
2001
. ;
98
(
2
):
489
-
491
.
21.
Zeiser
R
,
Blazar
BR
.
Acute graft-versus-host disease - biologic process, prevention, and therapy
.
N Engl J Med
.
2017
. ;
377
(
22
):
2167
-
2179
.
22.
Dirks
NL
,
Meibohm
B
.
Population pharmacokinetics of therapeutic monoclonal antibodies
.
Clin Pharmacokinet
.
2010
. ;
49
(
10
):
633
-
659
.
23.
Thomas
R
.
Antigen-presenting cells in rheumatoid arthritis
.
Springer Semin Immunopathol
.
1998
. ;
20
(
1-2
):
53
-
72
.
24.
van der Maas
NG
,
Berghuis
D
,
van der Burg
M
,
Lankester
AC
.
B cell reconstitution and influencing factors after hematopoietic stem cell transplantation in children
.
Front Immunol
.
2019
. ;
10
:
782
.
25.
Larsen
CP
,
Pearson
TC
,
Adams
AB
, et al
.
Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties
.
Am J Transplant
.
2005
. ;
5
(
3
):
443
-
453
.
26.
Abelian
G
,
Gao
S
,
Gandhi
Y
,
Vakkalagadda
B
,
Perera
V
,
Murthy
B
.
The relationship between abatacept exposure and CD86 receptor occupancy in rheumatoid arthritis patients following subcutaneous administration and its association to patient outcomes [abstract]
.
Arthritis Rheumatol
.
2019
. ;
71
(
suppl 10
). Abstract 1392.
27.
Toubai
T
,
Magenau
J
.
Immunopathology and biology-based treatment of steroid-refractory graft-versus-host disease
.
Blood
.
2020
. ;
136
(
4
):
429
-
440
.
28.
Fuji
S
,
Takano
K
,
Mori
T
, et al
.
Impact of pretransplant body mass index on the clinical outcome after allogeneic hematopoietic SCT
.
Bone Marrow Transplant
.
2014
. ;
49
(
12
):
1505
-
1512
.
29.
Khuat
LT
,
Vick
LV
,
Choi
E
, et al
.
Mechanisms by which obesity promotes acute graft-versus-host disease in mice
.
Front Immunol
.
2021
. ;
12
:
752484
.
30.
Khuat
LT
,
Le
CT
,
Pai
CS
, et al
.
Obesity induces gut microbiota alterations and augments acute graft-versus-host disease after allogeneic stem cell transplantation
.
Sci Transl Med
.
2020
. ;
12
(
571
):
eaay7713
.
You do not currently have access to this content.
Sign in via your Institution