• Using whole-genome sequencing and RNA-seq, we characterized the genomic landscape of 295 DS-ALL cases and identified 15 distinct subtypes.

  • DS-ALL exhibits marked enrichment of RAG-mediated and C/EBP gene alterations and inferior outcomes in BCR::ABL1-like CRLF2-r cases.

Trisomy 21, the genetic cause of Down syndrome (DS), is the most common congenital chromosomal anomaly. It is associated with a 20-fold increased risk of acute lymphoblastic leukemia (ALL) during childhood and results in distinctive leukemia biology. To comprehensively define the genomic landscape of DS-ALL, we performed whole-genome sequencing and whole-transcriptome sequencing (RNA-Seq) on 295 cases. Our integrated genomic analyses identified 15 molecular subtypes of DS-ALL, with marked enrichment of CRLF2-r, IGH::IGF2BP1, and C/EBP altered (C/EBPalt) subtypes compared with 2257 non–DS-ALL cases. We observed abnormal activation of the CEBPD, CEBPA, and CEBPE genes in 10.5% of DS-ALL cases via a variety of genomic mechanisms, including chromosomal rearrangements and noncoding mutations leading to enhancer hijacking. A total of 42.3% of C/EBP-activated DS-ALL also have concomitant FLT3 point mutations or insertions/deletions, compared with 4.1% in other subtypes. CEBPD overexpression enhanced the differentiation of mouse hematopoietic progenitor cells into pro-B cells in vitro, particularly in a DS genetic background. Notably, recombination-activating gene–mediated somatic genomic abnormalities were common in DS-ALL, accounting for a median of 27.5% of structural alterations, compared with 7.7% in non–DS-ALL. Unsupervised hierarchical clustering analyses of CRLF2-rearranged DS-ALL identified substantial heterogeneity within this group, with the BCR::ABL1-like subset linked to an inferior event-free survival, even after adjusting for known clinical risk factors. These results provide important insights into the biology of DS-ALL and point to opportunities for targeted therapy and treatment individualization.

1.
Mai
CT
,
Isenburg
JL
,
Canfield
MA
, et al
.
National population-based estimates for major birth defects, 2010-2014
.
Birth Defects Res
.
2019
;
111
(
18
):
1420
-
1435
.
2.
Hasle
H
,
Clemmensen
IH
,
Mikkelsen
M
.
Risks of leukaemia and solid tumours in individuals with Down’s syndrome
.
Lancet
.
2000
;
355
(
9199
):
165
-
169
.
3.
Roy
A
,
Cowan
G
,
Mead
AJ
, et al
.
Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
43
):
17579
-
17584
.
4.
Paulsson
K
,
Forestier
E
,
Lilljebjorn
H
, et al
.
Genetic landscape of high hyperdiploid childhood acute lymphoblastic leukemia
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
50
):
21719
-
21724
.
5.
Buitenkamp
TD
,
Izraeli
S
,
Zimmermann
M
, et al
.
Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group
.
Blood
.
2014
;
123
(
1
):
70
-
77
.
6.
Patrick
K
,
Wade
R
,
Goulden
N
, et al
.
Outcome of Down syndrome associated acute lymphoblastic leukaemia treated on a contemporary protocol
.
Br J Haematol
.
2014
;
165
(
4
):
552
-
555
.
7.
Rabin
KR
,
Chen
Z
,
Devidas
M
, et al
.
Outcomes in children with Down syndrome (DS) and B-lymphoblastic leukemia (B-ALL): a Children’s Oncology Group (COG) report
.
J Clin Oncol
.
2020
;
38
(
suppl 15
):
10510
.
8.
Brown
AL
,
de Smith
AJ
,
Gant
VU
, et al
.
Inherited genetic susceptibility to acute lymphoblastic leukemia in Down syndrome
.
Blood
.
2019
;
134
(
15
):
1227
-
1237
.
9.
Harvey
RC
,
Mullighan
CG
,
Chen
IM
, et al
.
Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia
.
Blood
.
2010
;
115
(
26
):
5312
-
5321
.
10.
Mullighan
CG
,
Collins-Underwood
JR
,
Phillips
LA
, et al
.
Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia
.
Nat Genet
.
2009
;
41
(
11
):
1243
-
1246
.
11.
Roberts
KG
,
Li
Y
,
Payne-Turner
D
, et al
.
Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia
.
N Engl J Med
.
2014
;
371
(
11
):
1005
-
1015
.
12.
Hertzberg
L
,
Vendramini
E
,
Ganmore
I
, et al
.
Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group
.
Blood
.
2010
;
115
(
5
):
1006
-
1017
.
13.
Brady
S
,
Roberts
K
,
Gu
ZH
, et al
.
The genomic landscape of pediatric acute lymphoblastic leukemia
.
Nat Genet
.
2022
;
54
(
9
):
1376
-
1389
.
14.
Tibshirani
R
,
Hastie
T
,
Narasimhan
B
,
Chu
G
.
Diagnosis of multiple cancer types by shrunken centroids of gene expression
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
10
):
6567
-
6572
.
15.
Li
B
,
Brady
SW
,
Ma
X
, et al
.
Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia
.
Blood
.
2020
;
135
(
1
):
41
-
55
.
16.
Alexandrov
LB
,
Kim
J
,
Haradhvala
NJ
, et al
.
The repertoire of mutational signatures in human cancer
.
Nature
.
2020
;
578
(
7793
):
94
-
101
.
17.
Grant
CE
,
Bailey
TL
,
Noble
WS
.
FIMO: scanning for occurrences of a given motif
.
Bioinformatics
.
2011
;
27
(
7
):
1017
-
1018
.
18.
Junco
JJ
,
Zorman
B
,
Gant
VU
, et al
.
CRLF2 overexpression results in reduced B-cell differentiation and upregulated E2F signaling in the Dp16 mouse model of Down syndrome
.
Exp Hematol
.
2022
;
110
:
34
-
38
.
19.
Russell
LJ
,
Capasso
M
,
Vater
I
, et al
.
Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia
.
Blood
.
2009
;
114
(
13
):
2688
-
2698
.
20.
Lawrence
MS
,
Stojanov
P
,
Polak
P
, et al
.
Mutational heterogeneity in cancer and the search for new cancer-associated genes
.
Nature
.
2013
;
499
(
7457
):
214
-
218
.
21.
Mermel
CH
,
Schumacher
SE
,
Hill
B
,
Meyerson
ML
,
Beroukhim
R
,
Getz
G
.
GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers
.
Genome Biol
.
2011
;
12
(
4
):
R41
.
22.
Vijayakrishnan
J
,
Qian
M
,
Studd
JB
, et al
.
Identification of four novel associations for B-cell acute lymphoblastic leukaemia risk
.
Nat Commun
.
2019
;
10
(
1
):
5348
.
23.
Gu
ZH
,
Churchman
ML
,
Roberts
KG
, et al
.
PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia
.
Nat Genet
.
2019
;
51
(
2
):
296
-
307
.
24.
Daver
N
,
Schlenk
RF
,
Russell
NH
,
Levis
MJ
.
Targeting FLT3 mutations in AML: review of current knowledge and evidence
.
Leukemia
.
2019
;
33
(
2
):
299
-
312
.
25.
Lana-Elola
E
,
Watson-Scales
SD
,
Fisher
EM
,
Tybulewicz
VL
.
Down syndrome: searching for the genetic culprits
.
Dis Model Mech
.
2011
;
4
(
5
):
586
-
595
.
26.
Li
Z
,
Yu
T
,
Morishima
M
, et al
.
Duplication of the entire 22.9 Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities
.
Hum Mol Genet
.
2007
;
16
(
11
):
1359
-
1366
.
27.
Painter
MW
,
Davis
S
,
Hardy
RR
,
Mathis
D
,
Benoist
C
;
Immunological Genome Project Consortium
.
Transcriptomes of the B and T lineages compared by multiplatform microarray profiling
.
J Immunol
.
2011
;
186
(
5
):
3047
-
3057
.
28.
Mullighan
CG
,
Su
X
,
Zhang
J
, et al
.
Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia
.
N Engl J Med
.
2009
;
360
(
5
):
470
-
480
.
29.
Den Boer
ML
,
van Slegtenhorst
M
,
De Menezes
RX
, et al
.
A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study
.
Lancet Oncol
.
2009
;
10
(
2
):
125
-
134
.
30.
Nik-Zainal
S
,
Alexandrov
LB
,
Wedge
DC
, et al
.
Mutational processes molding the genomes of 21 breast cancers
.
Cell
.
2012
;
149
(
5
):
979
-
993
.
31.
Stoskus
M
,
Vaitkeviciene
G
,
Eidukaite
A
,
Griskevicius
L
.
ETV6/RUNX1 transcript is a target of RNA-binding protein IGF2BP1 in t(12;21)(p13;q22)-positive acute lymphoblastic leukemia
.
Blood Cells Mol Dis
.
2016
;
57
:
30
-
34
.
32.
Stoskus
M
,
Eidukaite
A
,
Griskevicius
L
.
Defining the significance of IGF2BP1 overexpression in t(12;21)(p13;q22)-positive leukemia REH cells
.
Leuk Res
.
2016
;
47
:
16
-
21
.
33.
Jeffries
SJ
,
Jones
L
,
Harrison
CJ
,
Russell
LJ
.
IGH@ translocations co-exist with other primary rearrangements in B-cell precursor acute lymphoblastic leukemia
.
Haematologica
.
2014
;
99
(
8
):
1334
-
1342
.
34.
Gu
G
,
Sederberg
MC
,
Drachenberg
MR
,
South
ST
.
IGF2BP1: a novel IGH translocation partner in B acute lymphoblastic leukemia
.
Cancer Genet
.
2014
;
207
(
7-8
):
332
-
334
.
35.
Keeshan
K
,
He
Y
,
Wouters
BJ
, et al
.
Tribbles homolog 2 inactivates C/EBPalpha and causes acute myelogenous leukemia
.
Cancer Cell
.
2006
;
10
(
5
):
401
-
411
.
36.
Tawana
K
,
Wang
J
,
Renneville
A
, et al
.
Disease evolution and outcomes in familial AML with germline CEBPA mutations
.
Blood
.
2015
;
126
(
10
):
1214
-
1223
.
37.
Taskesen
E
,
Bullinger
L
,
Corbacioglu
A
, et al
.
Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity
.
Blood
.
2011
;
117
(
8
):
2469
-
2475
.
38.
Chapiro
E
,
Radford-Weiss
I
,
Cung
HA
, et al
.
Chromosomal translocations involving the IGH@ locus in B-cell precursor acute lymphoblastic leukemia: 29 new cases and a review of the literature
.
Cancer Genet
.
2013
;
206
(
5
):
162
-
173
.
39.
Akasaka
T
,
Balasas
T
,
Russell
LJ
, et al
.
Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL)
.
Blood
.
2007
;
109
(
8
):
3451
-
3461
.
40.
Messinger
YH
,
Higgins
RR
,
Devidas
M
,
Hunger
SP
,
Carroll
AJ
,
Heerema
NA
.
Pediatric acute lymphoblastic leukemia with a t(8;14)(q11.2;q32): B-cell disease with a high proportion of Down syndrome: a Children’s Oncology Group study
.
Cancer Genet
.
2012
;
205
(
9
):
453
-
458
.
41.
Cirovic
B
,
Schonheit
J
,
Kowenz-Leutz
E
, et al
.
C/EBP-induced transdifferentiation reveals granulocyte-macrophage precursor-like plasticity of B cells
.
Stem Cell Rep
.
2017
;
8
(
2
):
346
-
359
.
You do not currently have access to this content.
Sign in via your Institution