• Parallel occurrence of resistance mechanisms, including preexisting epigenetic profiles and converging adaptation patterns across subclones.

  • Subclone-specific interactions of myeloma and bone marrow microenvironment cells.

Intratumor heterogeneity as a clinical challenge becomes most evident after several treatment lines, when multidrug-resistant subclones accumulate. To address this challenge, the characterization of resistance mechanisms at the subclonal level is key to identify common vulnerabilities. In this study, we integrate whole-genome sequencing, single-cell (sc) transcriptomics (scRNA sequencing), and chromatin accessibility (scATAC sequencing) together with mitochondrial DNA mutations to define subclonal architecture and evolution for longitudinal samples from 15 patients with relapsed or refractory multiple myeloma. We assess transcriptomic and epigenomic changes to resolve the multifactorial nature of therapy resistance and relate it to the parallel occurrence of different mechanisms: (1) preexisting epigenetic profiles of subclones associated with survival advantages, (2) converging phenotypic adaptation of genetically distinct subclones, and (3) subclone-specific interactions of myeloma and bone marrow microenvironment cells. Our study showcases how an integrative multiomics analysis can be applied to track and characterize distinct multidrug-resistant subclones over time for the identification of molecular targets against them.

1.
Marusyk
A
,
Janiszewska
M
,
Polyak
K
.
Intratumor heterogeneity: the rosetta stone of therapy resistance
.
Cancer Cell
.
2020
;
37
(
4
):
471
-
484
.
2.
Morgan
GJ
,
Walker
BA
,
Davies
FE
.
The genetic architecture of multiple myeloma
.
Nat Rev Cancer
.
2012
;
12
(
5
):
335
-
348
.
3.
Bolli
N
,
Avet-Loiseau
H
,
Wedge
DC
, et al
.
Heterogeneity of genomic evolution and mutational profiles in multiple myeloma
.
Nat Commun
.
2014
;
5
:
2997
.
4.
Ziccheddu
B
,
Biancon
G
,
Bagnoli
F
, et al
.
Integrative analysis of the genomic and transcriptomic landscape of double-refractory multiple myeloma
.
Blood Adv
.
2020
;
4
(
5
):
830
-
844
.
5.
Manier
S
,
Salem
KZ
,
Park
J
,
Landau
DA
,
Getz
G
,
Ghobrial
IM
.
Genomic complexity of multiple myeloma and its clinical implications
.
Nat Rev Clin Oncol
.
2017
;
14
(
2
):
100
-
113
.
6.
Dutta
AK
,
Alberge
JB
,
Sklavenitis-Pistofidis
R
,
Lightbody
ED
,
Getz
G
,
Ghobrial
IM
.
Single-cell profiling of tumour evolution in multiple myeloma - opportunities for precision medicine
.
Nat Rev Clin Oncol
.
2022
;
19
(
4
):
223
-
236
.
7.
Da Vià
MC
,
Dietrich
O
,
Truger
M
, et al
.
Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma
.
Nat Med
.
2021
;
27
(
4
):
616
-
619
.
8.
Tirier
SM
,
Mallm
JP
,
Steiger
S
, et al
.
Subclone-specific microenvironmental impact and drug response in refractory multiple myeloma revealed by single-cell transcriptomics
.
Nat Commun
.
2021
;
12
(
1
):
6960
.
9.
Cohen
YC
,
Zada
M
,
Wang
SY
, et al
.
Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing
.
Nat Med
.
2021
;
27
(
3
):
491
-
503
.
10.
Lareau
CA
,
Ludwig
LS
,
Muus
C
, et al
.
Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling
.
Nat Biotechnol
.
2021
;
39
(
4
):
451
-
461
.
11.
Penter
L
,
Gohil
SH
,
Lareau
C
, et al
.
Longitudinal single-cell dynamics of chromatin accessibility and mitochondrial mutations in chronic lymphocytic leukemia mirror disease history
.
Cancer Discov
.
2021
;
11
(
12
):
30483063
.
12.
Velten
L
,
Story
BA
,
Hernández-Malmierca
P
, et al
.
Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics
.
Nat Commun
.
2021
;
12
(
1
):
1366
.
13.
Rasche
L
,
Schinke
C
,
Maura
F
, et al
.
The spatio-temporal evolution of multiple myeloma from baseline to relapse-refractory states
.
Nat Commun
.
2022
;
13
(
1
):
4517
.
14.
Keats
JJ
,
Chesi
M
,
Egan
JB
, et al
.
Clonal competition with alternating dominance in multiple myeloma
.
Blood
.
2012
;
120
(
5
):
1067
-
1076
.
15.
Weinhold
N
,
Ashby
C
,
Rasche
L
, et al
.
Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma
.
Blood
.
2016
;
128
(
13
):
1735
-
1744
.
16.
Maura
F
,
Bolli
N
,
Angelopoulos
N
, et al
.
Genomic landscape and chronological reconstruction of driver events in multiple myeloma
.
Nat Commun
.
2019
;
10
(
1
):
3835
.
17.
Corre
J
,
Cleynen
A
,
Robiou du Pont
S
, et al
.
Multiple myeloma clonal evolution in homogeneously treated patients
.
Leukemia
.
2018
;
32
(
12
):
2636
-
2647
.
18.
Ledergor
G
,
Weiner
A
,
Zada
M
, et al
.
Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma
.
Nat Med
.
2018
;
24
(
12
):
1867
-
1876
.
19.
Frede
J
,
Anand
P
,
Sotudeh
N
, et al
.
Dynamic transcriptional reprogramming leads to immunotherapeutic vulnerabilities in myeloma
.
Nat Cell Biol
.
2021
;
23
(
11
):
1199
-
1211
.
20.
Waldschmidt
JM
,
Kloeber
JA
,
Anand
P
, et al
.
Single-cell profiling reveals metabolic reprogramming as a resistance mechanism in BRAF-mutated multiple myeloma
.
Clin Cancer Res
.
2021
;
27
(
23
):
6432
-
6444
.
21.
Sklavenitis-Pistofidis
R
,
Aranha
MP
,
Redd
RA
, et al
.
Immune biomarkers of response to immunotherapy in patients with high-risk smoldering myeloma
.
Cancer Cell
.
2022
;
40
(
11
):
1358
-
1373.e8
.
22.
Reisinger
E
,
Genthner
L
,
Kerssemakers
J
, et al
.
OTP: an automatized system for managing and processing NGS data
.
J Biotechnol
.
2017
;
261
:
53
-
62
.
23.
Giesen
N
,
Chatterjee
M
,
Scheid
C
, et al
.
A phase II clinical trial of combined BRAF/MEK inhibition for BRAF V600E-mutated multiple myeloma
.
Blood
.
2023
;
141
(
14
):
1685
-
1690
.
24.
Rustad
EH
,
Nadeu
F
,
Angelopoulos
N
, et al
.
mmsig: a fitting approach to accurately identify somatic mutational signatures in hematological malignancies
.
Commun Biol
.
2021
;
4
(
1
):
424
.
25.
Stuart
T
,
Butler
A
,
Hoffman
P
, et al
.
Comprehensive integration of single-cell data
.
Cell
.
2019
;
177
(
7
):
1888
-
1902.e21
.
26.
Jin
S
,
Guerrero-Juarez
CF
,
Zhang
L
, et al
.
Inference and analysis of cell-cell communication using CellChat
.
Nat Commun
.
2021
;
12
(
1
):
1088
.
27.
Granja
JM
,
Corces
MR
,
Pierce
SE
, et al
.
ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis
.
Nat Genet
.
2021
;
53
(
3
):
403
-
411
.
28.
van Dijk
D
,
Sharma
R
,
Nainys
J
, et al
.
Recovering gene interactions from single-cell data using data diffusion
.
Cell
.
2018
;
174
(
3
):
716
-
729.e27
.
29.
Satpathy
AT
,
Granja
JM
,
Yost
KE
, et al
.
Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion
.
Nat Biotechnol
.
2019
;
37
(
8
):
925
-
936
.
30.
Granja
JM
,
Klemm
S
,
McGinnis
LM
, et al
.
Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia
.
Nat Biotechnol
.
2019
;
37
(
12
):
1458
-
1465
.
31.
Zhang
Y
,
Liu
T
,
Meyer
CA
, et al
.
Model-based analysis of ChIP-Seq (MACS)
.
Genome Biol
.
2008
;
9
:
R137
.
32.
Khan
A
,
Fornes
O
,
Stigliani
A
, et al
.
JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework
.
Nucleic Acids Res
.
2021
;
46
(
D1
):
D1284
. D266.
33.
Castro-Mondragon
JA
,
Riudavets-Puig
R
,
Rauluseviciute
I
, et al
.
JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles
.
Nucleic Acids Res
.
2022
;
50
(
D1
):
D165
-
D173
.
34.
Mallm
J-P
,
Iskar
M
,
Ishaque
N
, et al
.
Linking aberrant chromatin features in chronic lymphocytic leukemia to transcription factor networks
.
Mol Syst Biol
.
2019
;
15
(
5
):
e8339
.
35.
Patel
AP
,
Tirosh
I
,
Trombetta
JJ
, et al
.
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
.
Science
.
2014
;
344
(
6190
):
1396
-
1401
.
36.
Melchor
L
,
Brioli
A
,
Wardell
CP
, et al
.
Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma
.
Leukemia
.
2014
;
28
(
8
):
1705
-
1715
.
37.
Ju
YS
,
Alexandrov
LB
,
Gerstung
M
, et al
.
Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer
.
Elife
.
2014
;
3
:
e02935
.
38.
Yuan
Y
,
Ju
YS
,
Kim
Y
, et al
.
Comprehensive molecular characterization of mitochondrial genomes in human cancers
.
Nat Genet
.
2020
;
52
(
3
):
342
-
352
.
39.
Landau
HJ
,
Yellapantula
V
,
Diamond
BT
, et al
.
Accelerated single cell seeding in relapsed multiple myeloma
.
Nat Commun
.
2020
;
11
(
1
):
3617
.
40.
Maura
F
,
Weinhold
N
,
Diamond
B
, et al
.
The mutagenic impact of melphalan in multiple myeloma
.
Leukemia
.
2021
;
35
(
8
):
2145
-
2150
.
41.
Rustad
EH
,
Yellapantula
V
,
Leongamornlert
D
, et al
.
Timing the initiation of multiple myeloma
.
Nat Commun
.
2020
;
11
(
1
):
1917
.
42.
Jannuzzi
AT
,
Arslan
S
,
Yilmaz
AM
, et al
.
Higher proteotoxic stress rather than mitochondrial damage is involved in higher neurotoxicity of bortezomib compared to carfilzomib
.
Redox Biol
.
2020
;
32
:
101502
.
43.
Sha
Z
,
Goldberg
AL
.
Multiple myeloma cells are exceptionally sensitive to heat shock, which overwhelms their proteostasis network and induces apoptosis
.
Proc Natl Acad Sci U S A
.
2020
;
117
(
35
):
21588
-
21597
.
44.
Shah
SP
,
Nooka
AK
,
Jaye
DL
,
Bahlis
NJ
,
Lonial
S
,
Boise
LH
.
Bortezomib-induced heat shock response protects multiple myeloma cells and is activated by heat shock factor 1 serine 326 phosphorylation
.
Oncotarget
.
2016
;
7
(
37
):
59727
-
59741
.
45.
Arozarena
I
,
Wellbrock
C
.
Overcoming resistance to BRAF inhibitors
.
Ann Transl Med
.
2017
;
5
(
19
):
387
.
46.
Zhang
Q
,
Liu
W
,
Zhang
HM
, et al
.
hTFtarget: a comprehensive database for regulations of human transcription factors and their targets
.
Genomics Proteomics Bioinformatics
.
2020
;
18
(
2
):
120
-
128
.
47.
University, B
.
NFKB target genes
. Accessed 11 October 2022. https://www.bu.edu/nf-kb/gene-resources/target-genes/.
48.
Luger
D
,
Yang
YA
,
Raviv
A
, et al
.
Expression of the B-cell receptor component CD79a on immature myeloid cells contributes to their tumor promoting effects
.
PLoS One
.
2013
;
8
(
10
):
e76115
.
49.
Monroe
JG
.
ITAM-mediated tonic signalling through pre-BCR and BCR complexes
.
Nat Rev Immunol
.
2006
;
6
(
4
):
283
-
294
.
50.
Kawakubo
H
,
Carey
JL
,
Brachtel
E
, et al
.
Expression of the NF-kappaB-responsive gene BTG2 is aberrantly regulated in breast cancer
.
Oncogene
.
2004
;
23
(
50
):
8310
-
8319
.
51.
Demchenko
YN
,
Kuehl
WM
.
A critical role for the NFkB pathway in multiple myeloma
.
Oncotarget
.
2010
;
1
:
59
-
68
.
52.
Munawar
U
,
Roth
M
,
Barrio
S
, et al
.
Assessment of TP53 lesions for p53 system functionality and drug resistance in multiple myeloma using an isogenic cell line model
.
Sci Rep
.
2019
;
9
(
1
):
18062
.
53.
Munawar
U
,
Rasche
L
,
Müller
N
, et al
.
Hierarchy of mono- and biallelic TP53 alterations in multiple myeloma cell fitness
.
Blood
.
2019
;
134
(
10
):
836
-
840
.
54.
Suzuki
R
,
Ogiya
D
,
Ogawa
Y
,
Kawada
H
,
Ando
K
.
Targeting CAM-DR and mitochondrial transfer for the treatment of multiple myeloma
.
Curr Oncol
.
2022
;
29
(
11
):
8529
-
8539
.
55.
Bjorklund
CC
,
Baladandayuthapani
V
,
Lin
HY
, et al
.
Evidence of a role for CD44 and cell adhesion in mediating resistance to lenalidomide in multiple myeloma: therapeutic implications
.
Leukemia
.
2014
;
28
(
2
):
373
-
383
.
56.
Neri
P
,
Bahlis
NJ
.
Targeting of adhesion molecules as a therapeutic strategy in multiple myeloma
.
Curr Cancer Drug Targets
.
2012
;
12
(
7
):
776
-
796
.
57.
Giesen
N
,
Paramasivam
N
,
Toprak
UH
, et al
.
Comprehensive genomic analysis of refractory multiple myeloma reveals a complex mutational landscape associated with drug resistance and novel therapeutic vulnerabilities
.
Haematologica
.
2022
;
107
(
8
):
1891
-
1901
.
58.
Hansson
M
,
Gimsing
P
,
Badros
A
, et al
.
A phase I dose-escalation study of antibody BI-505 in relapsed/refractory multiple myeloma
.
Clin Cancer Res
.
2015
;
21
(
12
):
2730
-
2736
.
59.
Chen
X
,
Wong
OK
,
Post
L
.
CD38 x ICAM1 bispecific antibody is a novel approach for treating multiple myeloma and lymphoma [abstract]
.
Blood
.
2021
;
138
(
suppl 1
):
2413
.
60.
Sherbenou
DW
,
Su
Y
,
Behrens
CR
, et al
.
Potent activity of an anti-ICAM1 antibody-drug conjugate against multiple myeloma
.
Clin Cancer Res
.
2020
;
26
(
22
):
6028
-
6038
.
61.
ICAM1-targeted immunotherapy is effective in multiple myeloma
.
Cancer Discov
.
2013
;
3
:
602
.
62.
Veitonmäki
N
,
Hansson
M
,
Zhan
F
, et al
.
A human ICAM-1 antibody isolated by a function-first approach has potent macrophage-dependent antimyeloma activity in vivo
.
Cancer Cell
.
2013
;
23
(
4
):
502
-
515
.
63.
Agnarelli
A
,
Chevassut
T
,
Mancini
EJ
.
IRF4 in multiple myeloma-Biology, disease and therapeutic target
.
Leuk Res
.
2018
;
72
:
52
-
58
.
64.
Shaffer
AL
,
Emre
NCT
,
Lamy
L
, et al
.
IRF4 addiction in multiple myeloma
.
Nature
.
2008
;
454
(
7201
):
226
-
231
.
65.
Zhu
YX
,
Shi
CX
,
Bruins
LA
, et al
.
Identification of lenalidomide resistance pathways in myeloma and targeted resensitization using cereblon replacement, inhibition of STAT3 or targeting of IRF4
.
Blood Cancer J
.
2019
;
9
(
2
):
19
.
66.
Mondala
PK
,
Vora
AA
,
Zhou
T
, et al
.
Selective antisense oligonucleotide inhibition of human IRF4 prevents malignant myeloma regeneration via cell cycle disruption
.
Cell Stem Cell
.
2021
;
28
(
4
):
623
-
636.e9
.
67.
Ueno
N
,
Nishimura
N
,
Ueno
S
, et al
.
1 acts as tumor suppressor for myeloma cells through direct transcriptional repression of IRF4
.
Oncogene
.
2017
;
36
(
31
):
4481
-
4497
.
68.
Ohguchi
H
,
Hideshima
T
,
Bhasin
MK
, et al
.
The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival
.
Nat Commun
.
2016
;
7
:
10258
.
69.
Fedele
PL
,
Liao
Y
,
Gong
JN
, et al
.
The transcription factor IRF4 represses proapoptotic BMF and BIM to licence multiple myeloma survival
.
Leukemia
.
2021
;
35
(
7
):
2114
-
2118
.
70.
Morelli
E
,
Leone
E
,
Cantafio
MEG
, et al
.
Selective targeting of IRF4 by synthetic microRNA-125b-5p mimics induces anti-multiple myeloma activity in vitro and in vivo
.
Leukemia
.
2015
;
29
(
11
):
2173
-
2183
.
71.
Li
N
,
Johnson
DC
,
Weinhold
N
, et al
.
Multiple myeloma risk variant at 7p15.3 creates an IRF4-binding site and interferes with CDCA7L expression
.
Nat Commun
.
2016
;
7
:
13656
.
72.
Jin
Y
,
Chen
K
,
De Paepe
A
, et al
.
Active enhancer and chromatin accessibility landscapes chart the regulatory network of primary multiple myeloma
.
Blood
.
2018
;
131
(
19
):
2138
-
2150
.
73.
Ordoñez
R
,
Kulis
M
,
Russiñol
N
, et al
.
Chromatin activation as a unifying principle underlying pathogenic mechanisms in multiple myeloma
.
Genome Res
.
2020
;
30
(
9
):
1217
-
1227
.
74.
Annunziata
CM
,
Davis
RE
,
Demchenko
Y
, et al
.
Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma
.
Cancer Cell
.
2007
;
12
(
2
):
115
-
130
.
75.
Hideshima
T
,
Chauhan
D
,
Richardson
P
, et al
.
NF-kappa B as a therapeutic target in multiple myeloma
.
J Biol Chem
.
2002
;
277
(
19
):
16639
-
16647
.
76.
Nelson
EA
,
Walker
SR
,
Kepich
A
, et al
.
Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3
.
Blood
.
2008
;
112
(
13
):
5095
-
5102
.
77.
Ogiya
D
,
Liu
J
,
Ohguchi
H
, et al
.
The JAK-STAT pathway regulates CD38 on myeloma cells in the bone marrow microenvironment: therapeutic implications
.
Blood
.
2020
;
136
(
20
):
2334
-
2345
.
78.
Huang
Y-H
,
Molavi
O
,
Alshareef
A
, et al
.
Constitutive activation of STAT3 in myeloma cells cultured in a three-dimensional, reconstructed bone marrow model
.
Cancers (Basel)
.
2018
;
10
(
6
):
206
.
79.
Yaccoby
S
,
Epstein
J
,
Qu
P
, et al
.
Melphalan affects genes critical for myeloma survival, homing, and response to cytokines and chemokines
.
Blood
.
2015
;
126
(
23
):
1808
.
80.
Goicoechea
I
,
Puig
N
,
Cedena
MT
, et al
.
Deep MRD profiling defines outcome and unveils different modes of treatment resistance in standard- and high-risk myeloma
.
Blood
.
2021
;
137
(
1
):
49
-
60
.
81.
Manier
S
,
Kawano
Y
,
Bianchi
G
,
Roccaro
AM
,
Ghobrial
IM
.
Cell autonomous and microenvironmental regulation of tumor progression in precursor states of multiple myeloma
.
Curr Opin Hematol
.
2016
;
23
(
4
):
426
-
433
.
82.
Zhao
T
,
Chiang
ZD
,
Morriss
JW
, et al
.
Spatial genomics enables multi-modal study of clonal heterogeneity in tissues
.
Nature
.
2022
;
601
(
7891
):
85
-
91
.
83.
Black
S
,
Phillips
D
,
Hickey
JW
, et al
.
CODEX multiplexed tissue imaging with DNA-conjugated antibodies
.
Nat Protoc
.
2021
;
16
(
8
):
3802
-
3835
.
84.
Samur
MK
,
Fulciniti
M
,
Aktas Samur
A
, et al
.
Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma
.
Nat Commun
.
2021
;
12
(
1
):
868
.
85.
Nijhof
IS
,
Casneuf
T
,
van Velzen
J
, et al
.
CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma
.
Blood
.
2016
;
128
(
7
):
959
-
970
.
86.
Frick
C
,
Odermatt
A
,
Zen
K
, et al
.
Interaction of ICAM-1 with beta 2-integrin CD11c/CD18: characterization of a peptide ligand that mimics a putative binding site on domain D4 of ICAM-1
.
Eur J Immunol
.
2005
;
35
(
12
):
3610
-
3621
.
87.
Moser-Katz
T
,
Joseph
NS
,
Dhodapkar
MV
,
Lee
KP
,
Boise
LH
.
Game of bones: how myeloma manipulates its microenvironment
.
Front Oncol
.
2020
;
10
:
625199
.
You do not currently have access to this content.
Sign in via your Institution