Identification of recurrent leukemia-associated mutations in genes encoding regulators of DNA methylation such as DNMT3A and TET2 have underscored the critical importance of DNA methylation in maintenance of normal physiology. To gain insight into how DNA methylation exerts the central role, we sought to determine the genome-wide pattern of DNA methylation in the normal precursors of leukemia cells: the hematopoietic stem cell (HSC), and investigate the factors that affect alterations in DNA methylation and gene expression.

We performed whole genome bisulfite sequencing (WGBS) on purified murine HSCs achieving a total of 1,121M reads, resulting in a combined average of 40X coverage. Using Hidden Markov Model we identified 32,325 under-methylated regions (UMRs) with average proportion of methylation ≤ 10% and by inspecting the UMR size distribution, we discovered exceptionally large “methylation Canyons” which span highly conserved domains frequently containing transcription factors and are quite distinct from CpG islands and shores. Methylation Canyons are a distinct genomic feature that is stable, albeit with subtle differences, across cell-types and species. Canyon-associated genes showed a striking pattern of enrichment for genes involved in transcriptional regulation (318 genes, P=6.2 x 10-123), as well as genes containing a homeobox domain (111 genes, P=3.9 x 10-85). We compared Canyons with TF binding sites as identified from more than 150 ChIP-seq data sets across a variety of blood lineages (>10)19 and found that TF binding peaks for 10 HSC pluripotency TFs are significantly enriched in entirety of Canyons compared with their surrounding regions. Low DNA methylation is usually associated with active gene expression. However, half of Canyon genes associated with H3K27me3 showed low or no expression regardless of their H3K4me3 association while H3K4me3-only Canyon genes were highly expressed.

Because DNMT3A is mutated in a high frequency of human leukemias24, we examined the impact of loss of Dnmt3a on Canyon size. Upon knockout of Dnmt3a, the edges of the Canyons are hotspots of differential methylation while regions inside of Canyon are relatively resistant. The methylation loss in Dnmt3a KO HSCs led Canyon edge erosion, Canyon size expansion and addition of 861 new Canyons for a total of 1787 Canyons. Canyons marked with H3K4me3 only were most likely to expand after Dnmt3a KO and the canyons marked only with H3K27me3 or with both marks were more likely to contract. This suggests Dnmt3a specifically is acting to restrain Canyon size where active histone marks (and active transcription) are already present. WGBS cannot distinguish between 5mC and 5hmC, so we determined the genome-wide distribution of 5hmC in WT and Dnmt3a KO HSCs using the cytosine-5-methylenesulphonate (CMS)-Seq method in which sodium bisulfate treatment convert 5hmC to CMS; CMS-containing DNA fragments are then immunoprecipitated using a CMS specific antiserum. Strikingly, 5hmC peaks were enriched specifically at the borders of Canyons. In particular, expanding Canyons, typically associated with highest H3K4me3 marking, were highly enriched at the edges for the 5hmC signal suggesting a model in which Tet proteins and Dnmt3a act concomitantly on Canyon borders opposing each other in alternately effacing and restoring methylation at the edges, particularly at sites of active chromatin marks. Using Oncomine data, we tested whether Canyon-associated genes were likely to be associated with hematologic malignancy development and found Canyon genes were highly enriched in seven signatures of genes over-expressed in Leukemia patients compared to normal bone marrow; in contrast, four sets of control genes were not similarly enriched. Further using TCGA data, we found that expressed canyon genes are significantly enriched for differentially expressed genes between patients with and without DNMT3A mutation (p value<0.05) Overall, 76 expressed canyon genes, including multiple HOX genes, are significantly changed in patients with DNMT3A mutation (p=0.0031). Methylation Canyons, the novel epigenetic landscape we describe may provide a mechanism for the regulation of hematopoiesis and may contribute to leukemia development.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution