• CD44 is indispensable for IDH-mutant leukemia by rewiring metabolism to sustain NADPH generation for producing oncometabolite R-2HG.

  • Targeting CD44-mediated metabolic rewiring represents a potential therapeutic vulnerability in IDH-mutant cancers.

Abstract

Recurrent isocitrate dehydrogenase (IDH) mutations catalyze nicotinamide adenine dinucleotide phosphate (NADPH)–dependent production of oncometabolite (R)-2-hydroxyglutarate (R-2HG) for tumorigenesis. IDH inhibition provides clinical response in a subset of acute myeloid leukemia (AML) cases; however, most patients develop resistance, highlighting the need for more effective IDH-targeting therapies. By comparing transcriptomic alterations in isogenic leukemia cells harboring CRISPR base-edited IDH mutations, we identify the activation of adhesion molecules including CD44, a transmembrane glycoprotein, as a shared feature of IDH-mutant leukemia, consistent with elevated CD44 expression in IDH-mutant AML patients. CD44 is indispensable for IDH-mutant leukemia cells through activating pentose phosphate pathway and inhibiting glycolysis by phosphorylating glucose-6-phosphate dehydrogenase and pyruvate kinase muscle isozyme M2, respectively. This metabolic rewiring ensures efficient NADPH generation for mutant IDH-catalyzed R-2HG production. Combining IDH inhibition with CD44 blockade enhances the elimination of IDH-mutant leukemia cells. Hence, we describe an oncogenic feedforward pathway involving CD44-mediated metabolic rewiring for oncometabolite production, representing a potentially targetable dependency of IDH-mutant malignancies.

1.
Yan
H
,
Parsons
DW
,
Jin
G
, et al
.
IDH1 and IDH2 mutations in gliomas
.
N Engl J Med
.
2009
;
360
(
8
):
765
-
773
.
2.
Parsons
DW
,
Jones
S
,
Zhang
X
, et al
.
An integrated genomic analysis of human glioblastoma multiforme
.
Science
.
2008
;
321
(
5897
):
1807
-
1812
.
3.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
4.
Mardis
ER
,
Ding
L
,
Dooling
DJ
, et al
.
Recurring mutations found by sequencing an acute myeloid leukemia genome
.
N Engl J Med
.
2009
;
361
(
11
):
1058
-
1066
.
5.
Dang
L
,
White
DW
,
Gross
S
, et al
.
Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
.
Nature
.
2009
;
462
(
7274
):
739
-
744
.
6.
Ward
PS
,
Patel
J
,
Wise
DR
, et al
.
The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate
.
Cancer Cell
.
2010
;
17
(
3
):
225
-
234
.
7.
Gross
S
,
Cairns
RA
,
Minden
MD
, et al
.
Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations
.
J Exp Med
.
2010
;
207
(
2
):
339
-
344
.
8.
Jin
G
,
Reitman
ZJ
,
Duncan
CG
, et al
.
Disruption of wild-type IDH1 suppresses D-2-hydroxyglutarate production in IDH1-mutated gliomas
.
Cancer Res
.
2013
;
73
(
2
):
496
-
501
.
9.
Lu
C
,
Ward
PS
,
Kapoor
GS
, et al
.
IDH mutation impairs histone demethylation and results in a block to cell differentiation
.
Nature
.
2012
;
483
(
7390
):
474
-
478
.
10.
Figueroa
ME
,
Abdel-Wahab
O
,
Lu
C
, et al
.
Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
.
Cancer Cell
.
2010
;
18
(
6
):
553
-
567
.
11.
Saha
SK
,
Parachoniak
CA
,
Ghanta
KS
, et al
.
Mutant IDH inhibits HNF-4alpha to block hepatocyte differentiation and promote biliary cancer. [published correction appears in Nature. 2015;528(7580):152]
.
Nature
.
2014
;
513
(
7516
):
110
-
114
.
12.
Xu
W
,
Yang
H
,
Liu
Y
, et al
.
Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases
.
Cancer Cell
.
2011
;
19
(
1
):
17
-
30
.
13.
Turcan
S
,
Rohle
D
,
Goenka
A
, et al
.
IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype
.
Nature
.
2012
;
483
(
7390
):
479
-
483
.
14.
Rohle
D
,
Popovici-Muller
J
,
Palaskas
N
, et al
.
An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells
.
Science
.
2013
;
340
(
6132
):
626
-
630
.
15.
Wang
F
,
Travins
J
,
DeLaBarre
B
, et al
.
Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation
.
Science
.
2013
;
340
(
6132
):
622
-
626
.
16.
Konteatis
Z
,
Artin
E
,
Nicolay
B
, et al
.
Vorasidenib (AG-881): a first-in-class, brain-penetrant dual inhibitor of mutant IDH1 and 2 for treatment of glioma
.
ACS Med Chem Lett
.
2020
;
11
(
2
):
101
-
107
.
17.
Cho
YS
,
Levell
JR
,
Liu
G
, et al
.
Discovery and evaluation of clinical candidate IDH305, a brain penetrant mutant IDH1 inhibitor
.
ACS Med Chem Lett
.
2017
;
8
(
10
):
1116
-
1121
.
18.
Okoye-Okafor
UC
,
Bartholdy
B
,
Cartier
J
, et al
.
New IDH1 mutant inhibitors for treatment of acute myeloid leukemia
.
Nat Chem Biol
.
2015
;
11
(
11
):
878
-
886
.
19.
Pusch
S
,
Krausert
S
,
Fischer
V
, et al
.
Pan-mutant IDH1 inhibitor BAY 1436032 for effective treatment of IDH1 mutant astrocytoma in vivo
.
Acta Neuropathol
.
2017
;
133
(
4
):
629
-
644
.
20.
Popovici-Muller
J
,
Lemieux
RM
,
Artin
E
, et al
.
Discovery of AG-120 (ivosidenib): a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers
.
ACS Med Chem Lett
.
2018
;
9
(
4
):
300
-
305
.
21.
de Botton
S
,
Fenaux
P
,
Yee
KWL
, et al
.
Olutasidenib (FT-2102) induces durable complete remissions in patients with relapsed or refractory IDH1-mutated AML
.
Blood Adv
.
2023
;
7
(
13
):
3117
-
3127
.
22.
Yen
K
,
Travins
J
,
Wang
F
, et al
.
AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations
.
Cancer Discov
.
2017
;
7
(
5
):
478
-
493
.
23.
Stein
EM
,
DiNardo
CD
,
Pollyea
DA
, et al
.
Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia
.
Blood
.
2017
;
130
(
6
):
722
-
731
.
24.
DiNardo
CD
,
Stein
EM
,
de Botton
S
, et al
.
Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML
.
N Engl J Med
.
2018
;
378
(
25
):
2386
-
2398
.
25.
Pollyea
DA
,
Tallman
MS
,
de Botton
S
, et al
.
Enasidenib, an inhibitor of mutant IDH2 proteins, induces durable remissions in older patients with newly diagnosed acute myeloid leukemia
.
Leukemia
.
2019
;
33
(
11
):
2575
-
2584
.
26.
Quek
L
,
David
MD
,
Kennedy
A
, et al
.
Clonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenib
.
Nat Med
.
2018
;
24
(
8
):
1167
-
1177
.
27.
Wang
F
,
Morita
K
,
DiNardo
CD
, et al
.
Leukemia stemness and co-occurring mutations drive resistance to IDH inhibitors in acute myeloid leukemia
.
Nat Commun
.
2021
;
12
(
1
):
2607
.
28.
Choe
S
,
Wang
H
,
DiNardo
CD
, et al
.
Molecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AML
.
Blood Adv
.
2020
;
4
(
9
):
1894
-
1905
.
29.
Intlekofer
AM
,
Shih
AH
,
Wang
B
, et al
.
Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations
.
Nature
.
2018
;
559
(
7712
):
125
-
129
.
30.
Lyu
J
,
Liu
Y
,
Gong
L
, et al
.
Disabling uncompetitive inhibition of oncogenic IDH mutations drives acquired resistance
.
Cancer Discov
.
2023
;
13
(
1
):
170
-
193
.
31.
Harding
JJ
,
Lowery
MA
,
Shih
AH
, et al
.
Isoform switching as a mechanism of acquired resistance to mutant isocitrate dehydrogenase inhibition
.
Cancer Discov
.
2018
;
8
(
12
):
1540
-
1547
.
32.
Barajas
JM
,
Rasouli
M
,
Umeda
M
, et al
.
Acute myeloid leukemias with UBTF tandem duplications are sensitive to menin inhibitors
.
Blood
.
2024
;
143
(
7
):
619
-
630
.
33.
Wang
H
,
Chan
KYY
,
Cheng
CK
, et al
.
Pharmacogenomic profiling of pediatric acute myeloid leukemia to identify therapeutic vulnerabilities and inform functional precision medicine
.
Blood Cancer Discov
.
2022
;
3
(
6
):
516
-
535
.
34.
Liu
Y
,
Gu
Z
,
Cao
H
, et al
.
Convergence of oncogenic cooperation at single-cell and single-gene levels drives leukemic transformation
.
Nat Commun
.
2021
;
12
(
1
):
6323
.
35.
Trapnell
C
,
Pachter
L
,
Salzberg
SL
.
TopHat: discovering splice junctions with RNA-seq
.
Bioinformatics
.
2009
;
25
(
9
):
1105
-
1111
.
36.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
.
37.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
43
):
15545
-
15550
.
38.
Gu
Z
,
Liu
Y
,
Cai
F
, et al
.
Loss of EZH2 reprograms BCAA metabolism to drive leukemic transformation
.
Cancer Discov
.
2019
;
9
(
9
):
1228
-
1247
.
39.
Spessotto
P
,
Rossi
FM
,
Degan
M
, et al
.
Hyaluronan-CD44 interaction hampers migration of osteoclast-like cells by down-regulating MMP-9
.
J Cell Biol
.
2002
;
158
(
6
):
1133
-
1144
.
40.
Zhang
Y
,
Thant
AA
,
Machida
K
, et al
.
Hyaluronan-CD44s signaling regulates matrix metalloproteinase-2 secretion in a human lung carcinoma cell line QG90
.
Cancer Res
.
2002
;
62
(
14
):
3962
-
3965
.
41.
Zoller
M
.
CD44: can a cancer-initiating cell profit from an abundantly expressed molecule?
.
Nat Rev Cancer
.
2011
;
11
(
4
):
254
-
267
.
42.
Weng
X
,
Maxwell-Warburton
S
,
Hasib
A
,
Ma
L
,
Kang
L
.
The membrane receptor CD44: novel insights into metabolism
.
Trends Endocrinol Metab
.
2022
;
33
(
5
):
318
-
332
.
43.
Weinstein
JN
,
Collisson
EA
,
Millis
GB
, et al;
Cancer Genome Atlas Research Network
.
The Cancer Genome Atlas Pan-Cancer analysis project
.
Nat Genet
.
2013
;
45
(
10
):
1113
-
1120
.
44.
Tyner
JW
,
Tognon
CE
,
Bottomly
D
, et al
.
Functional genomic landscape of acute myeloid leukaemia
.
Nature
.
2018
;
562
(
7728
):
526
-
531
.
45.
Gunn
K
,
Myllykoski
M
,
Cao
JZ
, et al
.
(R)-2-hydroxyglutarate inhibits KDM5 histone lysine demethylases to drive transformation in IDH-mutant cancers
.
Cancer Discov
.
2023
;
13
(
6
):
1478
-
1497
.
46.
Godar
S
,
Ince
TA
,
Bell
GW
, et al
.
Growth-inhibitory and tumor- suppressive functions of p53 depend on its repression of CD44 expression
.
Cell
.
2008
;
134
(
1
):
62
-
73
.
47.
Ponta
H
,
Sherman
L
,
Herrlich
PA
.
CD44: from adhesion molecules to signalling regulators
.
Nat Rev Mol Cell Biol
.
2003
;
4
(
1
):
33
-
45
.
48.
Chen
L
,
Zhang
Z
,
Hoshino
A
, et al
.
NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism
.
Nat Metab
.
2019
;
1
:
404
-
415
.
49.
Carpenter
KL
,
Jalloh
I
,
Hutchinson
PJ
.
Glycolysis and the significance of lactate in traumatic brain injury
.
Front Neurosci
.
2015
;
9
:
112
.
50.
Jang
C
,
Chen
L
,
Rabinowitz
JD
.
Metabolomics and isotope tracing
.
Cell
.
2018
;
173
(
4
):
822
-
837
.
51.
Thorne
RF
,
Wang
Y
,
Zhang
Y
, et al
.
Evaluating nuclear translocation of surface receptors: recommendations arising from analysis of CD44
.
Histochem Cell Biol
.
2020
;
153
(
2
):
77
-
87
.
52.
Meng
Q
,
Zhang
Y
,
Hao
S
, et al
.
Recent findings in the regulation of G6PD and its role in diseases
.
Front Pharmacol
.
2022
;
13
:
932154
.
53.
Zahra
K
,
Dey
T
,
Ashish
,
Mishra
SP
,
Pandey
U
.
Pyruvate kinase M2 and cancer: The role of PKM2 in promoting tumorigenesis
.
Front Oncol
.
2020
;
10
:
159
.
54.
Tamada
M
,
Nagano
O
,
Tateyama
S
, et al
.
Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells
.
Cancer Res
.
2012
;
72
(
6
):
1438
-
1448
.
55.
Thorne
RF
,
Legg
JW
,
Isacke
CM
.
The role of the CD44 transmembrane and cytoplasmic domains in co-ordinating adhesive and signalling events
.
J Cell Sci
.
2004
;
117
(
Pt 3
):
373
-
380
.
56.
Turley
EA
,
Noble
PW
,
Bourguignon
LY
.
Signaling properties of hyaluronan receptors
.
J Biol Chem
.
2002
;
277
(
7
):
4589
-
4592
.
57.
Christofk
HR
,
Vander Heiden
MG
,
Wu
N
,
Asara
JM
,
Cantley
LC
.
Pyruvate kinase M2 is a phosphotyrosine-binding protein
.
Nature
.
2008
;
452
(
7184
):
181
-
186
.
58.
Hitosugi
T
,
Kang
S
,
Vander Heiden
MG
, et al
.
Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth
.
Sci Signal
.
2009
;
2
(
97
):
ra73
.
59.
Matte
A
,
Lupo
F
,
Tibaldi
E
, et al
.
Fyn specifically regulates the activity of red cell glucose-6-phosphate-dehydrogenase
.
Redox Biol
.
2020
;
36
:
101639
.
60.
Lobo
NA
,
Shimono
Y
,
Qian
D
,
Clarke
MF
.
The biology of cancer stem cells
.
Annu Rev Cell Dev Biol
.
2007
;
23
:
675
-
699
.
61.
Xu
H
,
Niu
M
,
Yuan
X
,
Wu
K
,
Liu
A
.
CD44 as a tumor biomarker and therapeutic target
.
Exp Hematol Oncol
.
2020
;
9
(
1
):
36
.
62.
Jin
L
,
Hope
KJ
,
Zhai
Q
,
Smadja-Joffe
F
,
Dick
JE
.
Targeting of CD44 eradicates human acute myeloid leukemic stem cells
.
Nat Med
.
2006
;
12
(
10
):
1167
-
1174
.
63.
Zhang
S
,
Wu
CC
,
Fecteau
JF
, et al
.
Targeting chronic lymphocytic leukemia cells with a humanized monoclonal antibody specific for CD44
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
15
):
6127
-
6132
.
64.
Hanahan
D
.
Hallmarks of cancer: new dimensions
.
Cancer Discov
.
2022
;
12
(
1
):
31
-
46
.
65.
DiNardo
CD
,
Propert
KJ
,
Loren
AW
, et al
.
Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia
.
Blood
.
2013
;
121
(
24
):
4917
-
4924
.
66.
Gelman
SJ
,
Naser
F
,
Mahieu
NG
, et al
.
Consumption of NADPH for 2-HG synthesis increases pentose phosphate pathway flux and sensitizes cells to oxidative stress
.
Cell Rep
.
2018
;
22
(
2
):
512
-
522
.
67.
Salamanca-Cardona
L
,
Shah
H
,
Poot
AJ
, et al
.
In vivo imaging of glutamine metabolism to the oncometabolite 2-hydroxyglutarate in IDH1/2 mutant tumors
.
Cell Metab
.
2017
;
26
(
6
):
830
-
841.e3e3
.
68.
Niu
X
,
Stancliffe
E
,
Gelman
SJ
, et al
.
Cytosolic and mitochondrial NADPH fluxes are independently regulated
.
Nat Chem Biol
.
2023
;
19
(
7
):
837
-
845
.
69.
Zhu
J
,
Schwörer
S
,
Berisa
M
, et al
.
Mitochondrial NADP(H) generation is essential for proline biosynthesis
.
Science
.
2021
;
372
(
6545
):
968
-
972
.
70.
Tran
DH
,
Kesavan
R
,
Rion
H
, et al
.
Mitochondrial NADP(+) is essential for proline biosynthesis during cell growth
.
Nat Metab
.
2021
;
3
(
4
):
571
-
585
.
71.
Sulkowski
PL
,
Corso
CD
,
Robinson
ND
, et al
.
2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity
.
Sci Transl Med
.
2017
;
9
(
375
):
eaal2463
.
72.
Shi
DD
,
Savani
MR
,
Levitt
MM
, et al
.
De novo pyrimidine synthesis is a targetable vulnerability in IDH mutant glioma
.
Cancer Cell
.
2022
;
40
(
9
):
939
-
956.e16
.
73.
Chan
SM
,
Thomas
D
,
Corces-Zimmerman
MR
, et al
.
Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia
.
Nat Med
.
2015
;
21
(
2
):
178
-
184
.
74.
Gbyli
R
,
Song
Y
,
Liu
W
, et al
.
In vivo anti-tumor effect of PARP inhibition in IDH1/2 mutant MDS/AML resistant to targeted inhibitors of mutant IDH1/2
.
Leukemia
.
2022
;
36
(
5
):
1313
-
1323
.
75.
Emadi
A
,
Jun
SA
,
Tsukamoto
T
,
Fathi
AT
,
Minden
MD
,
Dang
CV
.
Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations
.
Exp Hematol
.
2014
;
42
(
4
):
247
-
251
.
76.
Yan
Y
,
Zuo
X
,
Wei
D
.
Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target
.
Stem Cells Transl Med
.
2015
;
4
(
9
):
1033
-
1043
.
77.
Zoller
M
.
CD44, hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells
.
Front Immunol
.
2015
;
6
:
235
.
78.
Avigdor
A
,
Goichberg
P
,
Shivtiel
S
, et al
.
CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow
.
Blood
.
2004
;
103
(
8
):
2981
-
2989
.
79.
Vey
N
,
Delaunay
J
,
Martinelli
G
, et al
.
Phase I clinical study of RG7356, an anti-CD44 humanized antibody, in patients with acute myeloid leukemia
.
Oncotarget
.
2016
;
7
(
22
):
32532
-
32542
.
You do not currently have access to this content.
Sign in via your Institution