• Type 2 CALRins5 mutations in myeloproliferative neoplasms uniquely activate the ATF6 pathway of the UPR.

  • CALRins5-mediated ATF6 activation leads to upregulation of B-cell lymphoma extra large, representing a novel therapeutic intervention.

Abstract

Most calreticulin (CALR) mutations in myeloproliferative neoplasms are classified as either type 1, a 52–base pair deletion (CALRdel52); or type 2, a 5–base pair insertion (CALRins5). Both are gain-of-function (GOF) mutations that generate an identical mutant C-terminal tail, which mediates the binding to, and activation of, the thrombopoietin receptor myeloproliferative leukemia protein (MPL). We recently reported that despite this shared GOF, CALRdel52 but not CALRins5 mutations cause loss of calcium binding function, leading to activation of, and dependency on, the inositol-requiring enzyme 1/X-box binding protein 1 pathway of the unfolded protein response (UPR). This led us to ask whether CALRins5 mutations activate and depend on a different UPR pathway, and whether this is likewise mediated by a mutation type–specific loss-of-function (LOF). Here, we show that CALRins5 mutations lead to activation of the activating transcription factor 6 (ATF6) pathway of the UPR due to loss of CALR chaperone function. This LOF is caused by interference of the CALRins5 mutant C terminus with key chaperone residue H170. Furthermore, we show that CALRins5 cells are partially dependent on ATF6 for cytokine-independent growth, and identify B-cell lymphoma extra large as a transcriptional target of ATF6 that promotes type 2 CALR-mutant cell survival.

1.
Campbell
PJ
,
Green
AR
.
The myeloproliferative disorders
.
N Engl J Med
.
2006
;
355
(
23
):
2452
-
2466
.
2.
Levine
RL
,
Gilliland
DG
.
Myeloproliferative disorders
.
Blood
.
2008
;
112
(
6
):
2190
-
2198
.
3.
Spivak
JL
.
Myeloproliferative neoplasms
.
N Engl J Med
.
2017
;
376
(
22
):
2168
-
2181
.
4.
Klampfl
T
,
Gisslinger
H
,
Harutyunyan
AS
, et al
.
Somatic mutations of calreticulin in myeloproliferative neoplasms
.
N Engl J Med
.
2013
;
369
(
25
):
2379
-
2390
.
5.
Nangalia
J
,
Massie
CE
,
Baxter
EJ
, et al
.
Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2
.
N Engl J Med
.
2013
;
369
(
25
):
2391
-
2405
.
6.
Michalak
M
,
Corbett
EF
,
Mesaeli
N
,
Nakamura
K
,
Opas
M
.
Calreticulin: one protein, one gene, many functions
.
Biochem J
.
1999
;
344 Pt 2
(
Pt 2
):
281
-
292
.
7.
Elf
S
,
Abdelfattah
NS
,
Chen
E
, et al
.
Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation
.
Cancer Discov
.
2016
;
6
(
4
):
368
-
381
.
8.
Narlı Özdemir
Z
,
İpek
Y
,
Patır
P
, et al
.
Impact of CALR and JAK2 V617F mutations on clinical course and disease outcomes in essential thrombocythemia: a multicenter retrospective study in Turkish patients
.
Turk J Haematol
.
2024
;
41
(
1
):
26
-
36
.
9.
Tefferi
A
,
Lasho
TL
,
Finke
C
, et al
.
Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact
.
Leukemia
.
2014
;
28
(
7
):
1568
-
1570
.
10.
Pietra
D
,
Rumi
E
,
Ferretti
VV
, et al
.
Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms
.
Leukemia
.
2016
;
30
(
2
):
431
-
438
.
11.
Ibarra
J
,
Elbanna
YA
,
Kurylowicz
K
, et al
.
Type I but not type II calreticulin mutations activate the IRE1α/XBP1 pathway of the unfolded protein response to drive myeloproliferative neoplasms
.
Blood Cancer Discov
.
2022
;
3
(
4
):
298
-
315
.
12.
Walter
P
,
Ron
D
.
The unfolded protein response: from stress pathway to homeostatic regulation
.
Science
.
2011
;
334
(
6059
):
1081
-
1086
.
13.
Guo
L
,
Groenendyk
J
,
Papp
S
, et al
.
Identification of an N-domain histidine essential for chaperone function in calreticulin
.
J Biol Chem
.
2003
;
278
(
50
):
50645
-
50653
.
14.
Benlabiod
C
,
Cacemiro
MDC
,
Nédélec
A
, et al
.
Calreticulin del52 and ins5 knock-in mice recapitulate different myeloproliferative phenotypes observed in patients with MPN
.
Nat Commun
.
2020
;
11
(
1
):
4886
.
15.
Haze
K
,
Yoshida
H
,
Yanagi
H
,
Yura
T
,
Mori
K
.
Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress
.
Mol Biol Cell
.
1999
;
10
(
11
):
3787
-
3799
.
16.
Wang
Y
,
Shen
J
,
Arenzana
N
,
Tirasophon
W
,
Kaufman
RJ
,
Prywes
R
.
Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response
.
J Biol Chem
.
2000
;
275
(
35
):
27013
-
27020
.
17.
Okada
T
,
Yoshida
H
,
Akazawa
R
,
Negishi
M
,
Mori
K
.
Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response
.
Biochem J
.
2002
;
366
(
Pt 2
):
585
-
594
.
18.
Plate
L
,
Cooley
CB
,
Chen
JJ
, et al
.
Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation
.
Elife
.
2016
;
5
:
e15550
.
19.
Saito
Y
,
Ihara
Y
,
Leach
MR
,
Cohen-Doyle
MF
,
Williams
DB
.
Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins
.
EMBO J
.
1999
;
18
(
23
):
6718
-
6729
.
20.
Zhou
X
,
Zheng
W
,
Li
Y
, et al
.
I-TASSER-MTD: a deep-learning-based platform for multi-domain protein structure and function prediction
.
Nat Protoc
.
2022
;
17
(
10
):
2326
-
2353
.
21.
Schürch
PM
,
Malinovska
L
,
Hleihil
M
, et al
.
Calreticulin mutations affect its chaperone function and perturb the glycoproteome
.
Cell Rep
.
2022
;
41
(
8
):
111689
.
22.
Jørgensen
CS
,
Ryder
LR
,
Steinø
A
, et al
.
Dimerization and oligomerization of the chaperone calreticulin
.
Eur J Biochem
.
2003
;
270
(
20
):
4140
-
4148
.
23.
Araki
M
,
Yang
Y
,
Imai
M
, et al
.
Homomultimerization of mutant calreticulin is a prerequisite for MPL binding and activation
.
Leukemia
.
2019
;
33
(
1
):
122
-
131
.
24.
Rivera
JF
,
Baral
AJ
,
Nadat
F
, et al
.
Zinc-dependent multimerization of mutant calreticulin is required for MPL binding and MPN pathogenesis
.
Blood Adv
.
2021
;
5
(
7
):
1922
-
1932
.
25.
Højrup
P
,
Roepstorff
P
,
Houen
G
.
Human placental calreticulin characterization of domain structure and post-translational modifications
.
Eur J Biochem
.
2001
;
268
(
9
):
2558
-
2565
.
26.
Bryant
P
,
Pozzati
G
,
Elofsson
A
.
Improved prediction of protein-protein interactions using AlphaFold2 [published correction appears in Nat Commun. 2022;13(1):1694]
.
Nat Commun
.
2022
;
13
(
1
):
1265
.
27.
Liu
T
,
Wang
Y
,
Luo
X
, et al
.
Enhancing protein stability with extended disulfide bonds
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
21
):
5910
-
5915
.
28.
Gallagher
CM
,
Garri
C
,
Cain
EL
, et al
.
Ceapins are a new class of unfolded protein response inhibitors, selectively targeting the ATF6α branch
.
Elife
.
2016
;
5
:
e11878
.
29.
Torres
SE
,
Gallagher
CM
,
Plate
L
, et al
.
Ceapins block the unfolded protein response sensor ATF6α by inducing a neomorphic inter-organelle tether
.
Elife
.
2019
;
8
:
e46595
.
30.
Kirito
K
,
Watanabe
T
,
Sawada
K
,
Endo
H
,
Ozawa
K
,
Komatsu
N
.
Thrombopoietin regulates Bcl-xL gene expression through Stat5 and phosphatidylinositol 3-kinase activation pathways
.
J Biol Chem
.
2002
;
277
(
10
):
8329
-
8337
.
31.
Araki
M
,
Yang
Y
,
Masubuchi
N
, et al
.
Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms
.
Blood
.
2016
;
127
(
10
):
1307
-
1316
.
32.
Chachoua
I
,
Pecquet
C
,
El-Khoury
M
, et al
.
Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants
.
Blood
.
2016
;
127
(
10
):
1325
-
1335
.
33.
Marty
C
,
Pecquet
C
,
Nivarthi
H
, et al
.
Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis
.
Blood
.
2016
;
127
(
10
):
1317
-
1324
.
You do not currently have access to this content.
Sign in via your Institution