• Pediatric CD371-positive B-cell precursor acute lymphoblastic leukemia shows transient lineage switch and slow early response to treatment.

  • Accurate immunophenotypic identification of lineage switch is mandatory to properly assess MRD by flow cytometry.

Abstract

In the effort to improve immunophenotyping and minimal residual disease (MRD) assessment in acute lymphoblastic leukemia (ALL), the international Berlin-Frankfurt-Münster (iBFM) Flow Network introduced the myelomonocytic marker CD371 for a large prospective characterization with a long follow-up. In the present study, we aimed to investigate the clinical and biological features of CD371-positive (CD371pos) pediatric B-cell precursor ALL (BCP-ALL). From June 2014 to February 2017, 1812 pediatric patients with newly diagnosed BCP-ALLs enrolled in trial AIEOP-BFM ALL 2009 were evaluated as part of either a screening (n = 843, Italian centers) or validation cohort (n = 969, other iBFM centers). Laboratory assessment at diagnosis consisted of morphological, immunophenotypic, and genetic analysis. Response assessment relied on morphology, multiparametric flow cytometry (MFC), and polymerase chain reaction (PCR)-MRD. At diagnosis, 160 of 1812 (8.8%) BCP-ALLs were CD371pos. This correlated with older age, lower ETV6::RUNX1 frequency, immunophenotypic immaturity (all P < .001), and strong expression of CD34 and of CD45 (P < .05). During induction therapy, CD371pos BCP-ALLs showed a transient myelomonocytic switch (mm-SW: up to 65.4% of samples at day 15) and an inferior response to chemotherapy (slow early response, P < .001). However, the 5-year event-free survival was 88.3%. Among 420 patients from the validation cohort, 27 of 28 (96.4%) cases positive for DUX4-fusions were CD371pos. In conclusion, in the largest pediatric cohort, CD371 is the most sensitive marker of transient mm-SW, whose recognition is essential for proper MFC MRD assessment. CD371pos is associated to poor early treatment response, although a good outcome can be reached after MRD-based ALL-related therapies.

1.
Siegel
DA
,
Henley
SJ
,
Li
J
,
Pollack
LA
,
Van Dyne
EA
,
White
A
.
Rates and trends of pediatric acute lymphoblastic leukemia - United States, 2001-2014
.
MMWR Morb Mortal Wkly Rep
.
2017
;
66
(
36
):
950
-
954
.
2.
Ward
E
,
DeSantis
C
,
Robbins
A
,
Kohler
B
,
Jemal
A
.
Childhood and adolescent cancer statistics, 2014
.
CA Cancer J Clin
.
2014
;
64
(
2
):
83
-
103
.
3.
Möricke
A
,
Zimmermann
M
,
Reiter
A
, et al
.
Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000
.
Leukemia
.
2010
;
24
(
2
):
265
-
284
.
4.
Hunger
SP
,
Lu
X
,
Devidas
M
, et al
.
Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the Children's Oncology Group
.
J Clin Oncol
.
2012
;
30
(
14
):
1663
-
1669
.
5.
Schmiegelow
K
,
Forestier
E
,
Hellebostad
M
, et al
.
Long-term results of NOPHO ALL-92 and ALL-2000 studies of childhood acute lymphoblastic leukemia
.
Leukemia
.
2010
;
24
(
2
):
345
-
354
.
6.
Locatelli
F
,
Schrappe
M
,
Bernardo
ME
,
Rutella
S
.
How I treat relapsed childhood acute lymphoblastic leukemia
.
Blood
.
2012
;
120
(
14
):
2807
-
2816
.
7.
Basso
G
,
Buldini
B
,
De Zen
L
,
Orfao
A
.
New methodologic approaches for immunophenotyping acute leukemias
.
Haematologica
.
2001
;
86
(
7
):
675
-
692
.
8.
Aricò
M
,
Valsecchi
MG
,
Rizzari
C
, et al
.
Long-term results of the AIEOP-ALL-95 Trial for childhood acute lymphoblastic leukemia: insight on the prognostic value of DNA index in the framework of Berlin-Frankfurt-Muenster based chemotherapy
.
J Clin Oncol
.
2008
;
26
(
2
):
283
-
289
.
9.
Gaipa
G
,
Basso
G
,
Biondi
A
,
Campana
D
.
Detection of minimal residual disease in pediatric acute lymphoblastic leukemia
.
Cytometry B Clin Cytom
.
2013
;
84
(
6
):
359
-
369
.
10.
Basso
G
,
Veltroni
M
,
Valsecchi
MG
, et al
.
Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow
.
J Clin Oncol
.
2009
;
27
(
31
):
5168
-
5174
.
11.
Zhao
X
,
Singh
S
,
Pardoux
C
, et al
.
Targeting C-type lectin-like molecule-1 for antibody-mediated immunotherapy in acute myeloid leukemia
.
Haematologica
.
2010
;
95
(
1
):
71
-
78
.
12.
Bakker
AB
,
van den Oudenrijn
S
,
Bakker
AQ
, et al
.
C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia
.
Cancer Res
.
2004
;
64
(
22
):
8443
-
8450
.
13.
Marshall
AS
,
Willment
JA
,
Lin
HH
,
Williams
DL
,
Gordon
S
,
Brown
GD
.
Identification and characterization of a novel human myeloid inhibitory C-type lectin-like receptor (MICL) that is predominantly expressed on granulocytes and monocytes
.
J Biol Chem
.
2004
;
279
(
15
):
14792
-
14802
.
14.
van Rhenen
A
,
van Dongen
GA
,
Kelder
A
, et al
.
The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells
.
Blood
.
2007
;
110
(
7
):
2659
-
2666
.
15.
Leong
SR
,
Sukumaran
S
,
Hristopoulos
M
, et al
.
An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia
.
Blood
.
2017
;
129
(
5
):
609
-
618
.
16.
Schinnerl
D
,
Mejstrikova
E
,
Schumich
A
, et al
.
CD371 cell surface expression: a unique feature of DUΧ4-rearranged acute lymphoblatic leukemia
.
Haematologica
.
2019
;
104
(
8
):
e352
-
e355
.
17.
Slamova
L
,
Starkova
J
,
Fronkova
E
, et al
.
CD2-positive B-cell precursor acute lymphoblastic leukemia with an early switch to the monocytic lineage
.
Leukemia
.
2014
;
28
(
3
):
609
-
620
.
18.
Novakova
M
,
Zaliova
M
,
Fiser
K
, et al
.
DUX4r, ZNF384r and PAX5-P80R mutated B-cell precursor acute lymphoblastic leukemia frequently undergo monocytic switch
.
Haematologica
.
2021
;
106
(
8
):
2066
-
2075
.
19.
Rossi
JG
,
Bernasconi
AR
,
Alonso
CN
, et al
.
Lineage switch in childhood acute leukemia: an unusual event with poor outcome
.
Am J Hematol
.
2012
;
87
(
9
):
890
-
897
.
20.
Dorantes-Acosta
E
,
Pelayo
R
.
Lineage switching in acute leukemias: a consequence of stem cell plasticity?
.
Bone Marrow Res
.
2012
;
2012
:
406796
.
21.
Imataki
O
,
Ohnishi
H
,
Yamaoka
G
, et al
.
Lineage switch from precursor B cell acute lymphoblastic leukemia to acute monocytic leukemia at relapse
.
Int J Clin Oncol
.
2010
;
15
(
1
):
112
-
115
.
22.
Gardner
R
,
Wu
D
,
Cherian
S
, et al
.
Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy
.
Blood
.
2016
;
127
(
20
):
2406
-
2410
.
23.
Wolach
O
,
Stone
RM
.
How I treat mixed-phenotype acute leukemia
.
Blood
.
2015
;
125
(
16
):
2477
-
2485
.
24.
Schrappe
M
,
Hunger
SP
,
Pui
CH
, et al
.
Outcomes after induction failure in childhood acute lymphoblastic leukemia
.
N Engl J Med
.
2012
;
366
(
15
):
1371
-
1381
.
25.
Germano
G
,
Pigazzi
M
,
del Giudice
L
, et al
.
Two consecutive immunophenotypic switches in a child with MLL-rearranged acute lymphoblastic leukemia
.
Haematologica
.
2006
;
91
(
5 suppl
):
ECR09
.
26.
Hutter
C
,
Attarbaschi
A
,
Fischer
S
, et al
.
Acute monocytic leukaemia originating from MLL-MLLT3-positive pre-B cells
.
Br J Haematol
.
2010
;
150
(
5
):
621
-
623
.
27.
Monma
F
,
Nishii
K
,
Ezuki
S
, et al
.
Molecular and phenotypic analysis of Philadelphia chromosome-positive bilineage leukemia: possibility of a lineage switch from T-lymphoid leukemic progenitor to myeloid cells
.
Cancer Genet Cytogenet
.
2006
;
164
(
2
):
118
-
121
.
28.
Conter
V
,
Valsecchi
MG
,
Cario
G
, et al
.
Four additional doses of PEG-L-asparaginase during the consolidation phase in the AIEOP-BFM ALL 2009 protocol do not improve outcome and increase toxicity in high-risk ALL: results of a randomized study
.
J Clin Oncol
.
2024
;
42
(
8
):
915
-
926
.
29.
Dworzak
MN
,
Buldini
B
,
Gaipa
G
, et al
.
AIEOP-BFM consensus guidelines 2016 for flow cytometric immunophenotyping of Pediatric acute lymphoblastic leukemia
.
Cytometry B Clin Cytom
.
2018
;
94
(
1
):
82
-
93
.
30.
Dworzak
MN
,
Gaipa
G
,
Ratei
R
, et al
.
Standardization of flow cytometric minimal residual disease evaluation in acute lymphoblastic leukemia: multicentric assessment is feasible
.
Cytometry B Clin Cytom
.
2008
;
74
(
6
):
331
-
340
.
31.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood
.
2016
;
127
(
20
):
2391
-
2405
.
32.
Béné
MC
,
Nebe
T
,
Bettelheim
P
, et al
.
Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet Work Package 10
.
Leukemia
.
2011
;
25
(
4
):
567
-
574
.
33.
Swerdlow
S
,
Campo
E
,
Lee Harris
N
, et al
. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues.
International Agency for Research on Cancer (IARC)
;
2017
.
34.
Mejstrikova
E
,
Volejnikova
J
,
Fronkova
E
, et al
.
Prognosis of children with mixed phenotype acute leukemia treated on the basis of consistent immunophenotypic criteria
.
Haematologica
.
2010
;
95
(
6
):
928
-
935
.
35.
Bene
MC
,
Castoldi
G
,
Knapp
W
, et al
.
Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL)
.
Leukemia
.
1995
;
9
(
10
):
1783
-
1786
.
36.
Cazzaniga
G
,
Songia
S
,
Biondi
A
;
EuroMRD Working Group
.
PCR technology to identify minimal residual disease
.
Methods Mol Biol
.
2021
;
2185
:
77
-
94
.
37.
van der Velden
VH
,
Panzer-Grümayer
ER
,
Cazzaniga
G
, et al
.
Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting
.
Leukemia
.
2007
;
21
(
4
):
706
-
713
.
38.
Gaipa
G
,
Basso
G
,
Aliprandi
S
, et al
.
Prednisone induces immunophenotypic modulation of CD10 and CD34 in nonapoptotic B-cell precursor acute lymphoblastic leukemia cells
.
Cytometry B Clin Cytom
.
2008
;
74
(
3
):
150
-
155
.
39.
Gaipa
G
,
Basso
G
,
Maglia
O
, et al
.
Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection
.
Leukemia
.
2005
;
19
(
1
):
49
-
56
.
40.
Dworzak
MN
,
Schumich
A
,
Printz
D
, et al
.
CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy
.
Blood
.
2008
;
112
(
10
):
3982
-
3988
.
41.
Dworzak
MN
,
Gaipa
G
,
Schumich
A
, et al
.
Modulation of antigen expression in B-cell precursor acute lymphoblastic leukemia during induction therapy is partly transient: evidence for a drug-induced regulatory phenomenon. Results of the AIEOP-BFM-ALL-FLOW-MRD-Study Group
.
Cytometry B Clin Cytom
.
2010
;
78
(
3
):
147
-
153
.
42.
Hrusak
O
,
de Haas
V
,
Stancikova
J
, et al
.
International cooperative study identifies treatment strategy in childhood ambiguous lineage leukemia
.
Blood
.
2018
;
132
(
3
):
264
-
276
.
43.
Mullighan
CG
.
How advanced are we in targeting novel subtypes of ALL?
.
Best Pract Res Clin Haematol
.
2019
;
32
(
4
):
101095
.
44.
Jeha
S
,
Choi
J
,
Roberts
KG
, et al
.
Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy
.
Blood Cancer Discov
.
2021
;
2
(
4
):
326
-
337
.
45.
Schwab
C
,
Cranston
RE
,
Ryan
SL
, et al
.
Integrative genomic analysis of childhood acute lymphoblastic leukaemia lacking a genetic biomarker in the UKALL2003 clinical trial
.
Leukemia
.
2023
;
37
(
3
):
529
-
538
.
46.
Conter
V
,
Valsecchi
MG
,
Buldini
B
, et al
.
Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis
.
Lancet Haematol
.
2016
;
3
(
2
):
e80
-
86
.
You do not currently have access to this content.
Sign in via your Institution