• Neoantigens arising from recurrent AML mutations are immunogenic and represent novel immunotherapeutic targets.

  • IDH2R140Q-specific T cells can selectively eliminate neoantigen/HLA-matched AML in vitro and in vivo.

Abstract

For patients with high-risk or relapsed/refractory acute myeloid leukemia (AML), allogeneic stem cell transplantation (allo-HSCT) and the graft-versus-leukemia effect mediated by donor T cells, offer the best chance of long-term remission. However, the concurrent transfer of alloreactive T cells can lead to graft-versus-host disease that is associated with transplant-related morbidity and mortality. Furthermore, ∼60% of patients will ultimately relapse after allo-HSCT, thus, underscoring the need for novel therapeutic strategies that are safe and effective. In this study, we explored the feasibility of immunotherapeutically targeting neoantigens, which arise from recurrent nonsynonymous mutations in AML and thus represent attractive targets because they are exclusively present on the tumor. Focusing on 14 recurrent driver mutations across 8 genes found in AML, we investigated their immunogenicity in 23 individuals with diverse HLA profiles. We demonstrate the immunogenicity of AML neoantigens, with 17 of 23 (74%) reactive donors screened mounting a response. The most immunodominant neoantigens were IDH2R140Q (n = 11 of 17 responders), IDH1R132H (n = 7 of 17), and FLT3D835Y (n = 6 of 17). In-depth studies of IDH2R140Q-specific T cells revealed the presence of reactive CD4+ and CD8+ T cells capable of recognizing distinct mutant-specific epitopes restricted to different HLA alleles. These neo–T cells could selectively recognize and kill HLA-matched AML targets endogenously expressing IDH2R140Q both in vitro and in vivo. Overall, our findings support the clinical translation of neoantigen–specific T cells to treat relapsed/refractory AML.

1.
Dohner
H
,
Weisdorf
DJ
,
Bloomfield
CD
.
Acute myeloid leukemia
.
N Engl J Med
.
2015
;
373
(
12
):
1136
-
1152
.
2.
Shimony
S
,
Stahl
M
,
Stone
RM
.
Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management
.
Am J Hematol
.
2023
;
98
(
3
):
502
-
526
.
3.
Dohner
H
,
Wei
AH
,
Appelbaum
FR
, et al
.
Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN
.
Blood
.
2022
;
140
(
12
):
1345
-
1377
.
4.
Cornelissen
JJ
,
Blaise
D
.
Hematopoietic stem cell transplantation for patients with AML in first complete remission
.
Blood
.
2016
;
127
(
1
):
62
-
70
.
5.
Webster
JA
,
Luznik
L
,
Gojo
I
.
Treatment of AML relapse After Allo-HCT
.
Front Oncol
.
2021
;
11
:
812207
.
6.
Kharfan-Dabaja
MA
,
Labopin
M
,
Polge
E
, et al
.
Association of second allogeneic hematopoietic cell transplant vs donor lymphocyte infusion with overall survival in patients with acute myeloid leukemia relapse
.
JAMA Oncol
.
2018
;
4
(
9
):
1245
-
1253
.
7.
Gill
S
,
Brudno
JN
.
CAR T-cell therapy in hematologic malignancies: clinical role, toxicity, and unanswered questions
.
Am Soc Clin Oncol Educ Book
.
2021
;
41
:
1
-
20
.
8.
Cummins
KD
,
Gill
S
.
Will CAR T cell therapy have a role in AML? Promises and pitfalls
.
Semin Hematol
.
2019
;
56
(
2
):
155
-
163
.
9.
Mardiana
S
,
Gill
S
.
CAR T cells for acute myeloid leukemia: state of the art and future directions
.
Front Oncol
.
2020
;
10
:
697
.
10.
Anguille
S
,
Van Tendeloo
VF
,
Berneman
ZN
.
Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia
.
Leukemia
.
2012
;
26
(
10
):
2186
-
2196
.
11.
Goswami
M
,
Hensel
N
,
Smith
BD
, et al
.
Expression of putative targets of immunotherapy in acute myeloid leukemia and healthy tissues
.
Leukemia
.
2014
;
28
(
5
):
1167
-
1170
.
12.
Narayan
R
,
Olsson
N
,
Wagar
LE
, et al
.
Acute myeloid leukemia immunopeptidome reveals HLA presentation of mutated nucleophosmin
.
PLoS One
.
2019
;
14
(
7
):
e0219547
.
13.
Lulla
PD
,
Naik
S
,
Vasileiou
S
, et al
.
Clinical effects of administering leukemia-specific donor T cells to patients with AML/MDS after allogeneic transplant
.
Blood
.
2021
;
137
(
19
):
2585
-
2597
.
14.
Kinoshita
H
,
Cooke
KR
,
Grant
M
, et al
.
Outcome of donor-derived TAA-T cell therapy in patients with high-risk or relapsed acute leukemia post allogeneic BMT
.
Blood Adv
.
2022
;
6
(
8
):
2520
-
2534
.
15.
Tawara
I
,
Kageyama
S
,
Miyahara
Y
, et al
.
Safety and persistence of WT1-specific T-cell receptor gene-transduced lymphocytes in patients with AML and MDS
.
Blood
.
2017
;
130
(
18
):
1985
-
1994
.
16.
Yarchoan
M
,
Johnson
BA
,
Lutz
ER
,
Laheru
DA
,
Jaffee
EM
.
Targeting neoantigens to augment antitumour immunity
.
Nat Rev Cancer
.
2017
;
17
(
4
):
209
-
222
.
17.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
18.
Cerami
E
,
Gao
J
,
Dogrusoz
U
, et al
.
The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
.
Cancer Discov
.
2012
;
2
(
5
):
401
-
404
.
19.
Gao
J
,
Aksoy
BA
,
Dogrusoz
U
, et al
.
Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal
.
Sci Signal
.
2013
;
6
(
269
):
pl1
.
20.
de Bruijn
I
,
Kundra
R
,
Mastrogiacomo
B
, et al
.
Analysis and visualization of longitudinal genomic and clinical data from the AACR Project GENIE Biopharma Collaborative in cBioPortal
.
Cancer Res
.
2023
;
83
(
23
):
3861
-
3867
.
21.
Sweeney
C
,
Vyas
P
.
The graft-versus-leukemia effect in AML
.
Front Oncol
.
2019
;
9
:
1217
.
22.
Styczynski
J
,
Tridello
G
,
Koster
L
, et al
.
Death after hematopoietic stem cell transplantation: changes over calendar year time, infections and associated factors
.
Bone Marrow Transplant
.
2020
;
55
(
1
):
126
-
136
.
23.
Medeiros
BC
,
Fathi
AT
,
DiNardo
CD
,
Pollyea
DA
,
Chan
SM
,
Swords
R
.
Isocitrate dehydrogenase mutations in myeloid malignancies
.
Leukemia
.
2017
;
31
(
2
):
272
-
281
.
24.
Issa
GC
,
DiNardo
CD
.
Acute myeloid leukemia with IDH1 and IDH2 mutations: 2021 treatment algorithm
.
Blood Cancer J
.
2021
;
11
(
6
):
107
.
25.
Patel
KP
,
Ravandi
F
,
Ma
D
, et al
.
Acute myeloid leukemia with IDH1 or IDH2 mutation: frequency and clinicopathologic features
.
Am J Clin Pathol
.
2011
;
135
(
1
):
35
-
45
.
26.
My Cancer Genome
. Accessed 7 January 2023. https://www.mycancergenome.org/content/alteration/idh2-r140q/.
27.
Chapuis
AG
,
Ragnarsson
GB
,
Nguyen
HN
, et al
.
Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients
.
Sci Transl Med
.
2013
;
5
(
174
):
174ra27
.
28.
Ruella
M
,
Maus
MV
.
Catch me if you can: leukemia escape after CD19-directed T cell immunotherapies
.
Comput Struct Biotechnol J
.
2016
;
14
:
357
-
362
.
29.
Shah
NN
,
Maatman
T
,
Hari
P
,
Johnson
B
.
Multi targeted CAR-T cell therapies for B-cell malignancies
.
Front Oncol
.
2019
;
9
:
146
.
30.
Xu
X
,
Sun
Q
,
Liang
X
, et al
.
Mechanisms of relapse after CD19 CAR T-cell therapy for acute lymphoblastic leukemia and its prevention and treatment strategies
.
Front Immunol
.
2019
;
10
:
2664
.
31.
Lulla
PD
,
Tzannou
I
,
Vasileiou
S
, et al
.
The safety and clinical effects of administering a multiantigen-targeted T cell therapy to patients with multiple myeloma
.
Sci Transl Med
.
2020
;
12
(
554
):
eaaz3339
.
32.
Vasileiou
S
,
Lulla
PD
,
Tzannou
I
, et al
.
T-cell therapy for lymphoma using nonengineered multiantigen-targeted T cells is safe and produces durable clinical effects
.
J Clin Oncol
.
2021
;
39
(
13
):
1415
-
1425
.
33.
Ley
TJ
,
Miller
C
, et al;
Cancer Genome Atlas Research Network
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med
.
2013
;
368
(
22
):
2059
-
2074
.
34.
Shafer
P
,
Kelly
LM
,
Hoyos
V
.
Cancer therapy with TCR-engineered T cells: current strategies, challenges, and prospects
.
Front Immunol
.
2022
;
13
:
835762
.
35.
Norberg
SM
,
Hinrichs
CS
.
Engineered T cell therapy for viral and non-viral epithelial cancers
.
Cancer Cell
.
2023
;
41
(
1
):
58
-
69
.
36.
Chapuis
AG
,
Egan
DN
,
Bar
M
, et al
.
T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant
.
Nat Med
.
2019
;
25
(
7
):
1064
-
1072
.
37.
Stadtmauer
EA
,
Faitg
TH
,
Lowther
DE
, et al
.
Long-term safety and activity of NY-ESO-1 SPEAR T cells after autologous stem cell transplant for myeloma
.
Blood Adv
.
2019
;
3
(
13
):
2022
-
2034
.
38.
Leidner
R
,
Sanjuan Silva
N
,
Huang
H
, et al
.
Neoantigen T-cell receptor gene therapy in pancreatic cancer
.
N Engl J Med
.
2022
;
386
(
22
):
2112
-
2119
.
39.
Johnson
LA
,
Heemskerk
B
,
Powell
DJ
, et al
.
Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes
.
J Immunol
.
2006
;
177
(
9
):
6548
-
6559
.
40.
Robbins
PF
,
Li
YF
,
El-Gamil
M
, et al
.
Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions
.
J Immunol
.
2008
;
180
(
9
):
6116
-
6131
.
41.
Robbins
PF
,
Kassim
SH
,
Tran
TL
, et al
.
A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response
.
Clin Cancer Res
.
2015
;
21
(
5
):
1019
-
1027
.
42.
Nathan
P
,
Hassel
JC
,
Rutkowski
P
, et al
.
Overall survival benefit with tebentafusp in metastatic uveal melanoma
.
N Engl J Med
.
2021
;
385
(
13
):
1196
-
1206
.
You do not currently have access to this content.
Sign in via your Institution