Abstract

Escape from immune surveillance is a hallmark of cancer. Immune deregulation caused by intrinsic and extrinsic cellular factors, such as altered T-cell functions, leads to immune exhaustion, loss of immune surveillance, and clonal proliferation of tumoral cells. The T-cell immune system contributes to the pathogenesis, maintenance, and progression of myelodysplastic syndrome (MDS). Here, we comprehensively reviewed our current biological knowledge of the T-cell compartment in MDS and recent advances in the development of immunotherapeutic strategies, such as immune checkpoint inhibitors and T-cell– and antibody–based adoptive therapies that hold promise to improve the outcome of patients with MDS.

1.
Xia
A
,
Zhang
Y
,
Xu
J
,
Yin
T
,
Lu
XJ
.
T cell dysfunction in cancer immunity and immunotherapy
.
Front Immunol
.
2019
;
10
:
1719
.
2.
Disis
ML
.
Immune regulation of cancer
.
J Clin Oncol
.
2010
;
28
(
29
):
4531
-
4538
.
3.
Waldman
AD
,
Fritz
JM
,
Lenardo
MJ
.
A guide to cancer immunotherapy: from T cell basic science to clinical practice
.
Nat Rev Immunol
.
2020
;
20
(
11
):
651
-
668
.
4.
Balandrán
JC
,
Lasry
A
,
Aifantis
I
.
The role of inflammation in the initiation and progression of myeloid neoplasms
.
Blood Cancer Discov
.
2023
;
4
(
4
):
254
-
266
.
5.
Chokr
N
,
Patel
R
,
Wattamwar
K
,
Chokr
S
.
The rising era of immune checkpoint inhibitors in myelodysplastic syndromes
.
Adv Hematol
.
2018
;
2018
:
2458679
.
6.
Lynch
OF
,
Calvi
LM
.
Immune dysfunction, cytokine disruption, and stromal changes in myelodysplastic syndrome: a review
.
Cells
.
2022
;
11
(
3
):
580
.
7.
Simoni
Y
,
Chapuis
N
.
Diagnosis of myelodysplastic syndromes: from immunological observations to clinical applications
.
Diagnostics (Basel)
.
2022
;
12
(
7
):
1659
.
8.
Symeonidis
A
,
Kourakli
A
,
Katevas
P
, et al
.
Immune function parameters at diagnosis in patients with myelodysplastic syndromes: correlation with the FAB classification and prognosis
.
Eur J Haematol
.
1991
;
47
(
4
):
277
-
281
.
9.
Zou
JX
,
Rollison
DE
,
Boulware
D
, et al
.
Altered naive and memory CD4+ T-cell homeostasis and immunosenescence characterize younger patients with myelodysplastic syndrome
.
Leukemia
.
2009
;
23
(
7
):
1288
-
1296
.
10.
Xu
L-P
,
Luo
X-H
,
Chang
Y-J
, et al
.
High CD4/CD8 ratio in allografts predicts adverse outcomes in unmanipulated HLA-mismatched/haploidentical hematopoietic stem cell transplantation for chronic myeloid leukemia
.
Ann Hematol
.
2009
;
88
(
10
):
1015
-
1024
.
11.
Tay
RE
,
Richardson
EK
,
Toh
HC
.
Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms
.
Cancer Gene Ther
.
2021
;
28
(
1-2
):
5
-
17
.
12.
Jardine
L
,
Barge
D
,
Ames-Draycott
A
, et al
.
Rapid detection of dendritic cell and monocyte disorders using CD4 as a lineage marker of the human peripheral blood antigen-presenting cell compartment
.
Front Immunol
.
2013
;
4
:
495
.
13.
Zhu
J
,
Paul
WE
.
CD4 T cells: fates, functions, and faults
.
Blood
.
2008
;
112
(
5
):
1557
-
1569
.
14.
Chatzileontiadou
DSM
,
Sloane
H
,
Nguyen
AT
,
Gras
S
,
Grant
EJ
.
The many faces of CD4(+) T cells: immunological and structural characteristics
.
Int J Mol Sci
.
2020
;
22
(
1
):
73
.
15.
Mosmann
TR
,
Cherwinski
H
,
Bond
MW
,
Giedlin
MA
,
Coffman
RL
.
Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins
.
J Immunol
.
1986
;
136
(
7
):
2348
-
2357
.
16.
Tan
Y
,
Tan
Y
,
Li
J
, et al
.
Combined IFN-γ and IL-2 release assay for detect active pulmonary tuberculosis: a prospective multicentre diagnostic study in China
.
J Transl Med
.
2021
;
19
(
1
):
289
.
17.
Li
X
,
Körner
H
,
Liu
X
.
Susceptibility to intracellular infections: contributions of TNF to immune defense
.
Front Microbiol
.
2020
;
11
:
1643
.
18.
Wang
X
,
Wu
DP
,
He
G
,
Miao
M
,
Sun
A
.
Research of subset and function of Th cells in bone marrow of myelodysplastic syndrome patients
.
Blood
.
2005
;
106
(
11
):
4913
.
19.
Liu
Z
,
Xu
X
,
Zheng
L
, et al
.
The value of serum IL-4 to predict the survival of MDS patients
.
Eur J Med Res
.
2023
;
28
(
1
):
7
.
20.
van Leeuwen-Kerkhoff
N
,
Westers
TM
,
Poddighe
PJ
,
de Gruijl
TD
,
Kordasti
S
,
van de Loosdrecht
AA
.
Thrombomodulin-expressing monocytes are associated with low-risk features in myelodysplastic syndromes and dampen excessive immune activation
.
Haematologica
.
2020
;
105
(
4
):
961
-
971
.
21.
Hamilton
DH
,
Bretscher
PA
.
Different immune correlates associated with tumor progression and regression: implications for prevention and treatment of cancer
.
Cancer Immunol Immunother
.
2008
;
57
(
8
):
1125
-
1136
.
22.
Hamilton
D
,
Ismail
N
,
Kroeger
D
,
Rudulier
C
,
Bretscher
P
.
Macroimmunology and immunotherapy of cancer
.
Immunotherapy
.
2009
;
1
(
3
):
367
-
383
.
23.
Romagnani
S
,
Maggi
E
,
Liotta
F
,
Cosmi
L
,
Annunziato
F
.
Properties and origin of human Th17 cells
.
Mol Immunol
.
2009
;
47
(
1
):
3
-
7
.
24.
Nistala
K
,
Wedderburn
LR
.
Th17 and regulatory T cells: rebalancing pro- and anti-inflammatory forces in autoimmune arthritis
.
Rheumatology (Oxford)
.
2009
;
48
(
6
):
602
-
606
.
25.
Zhao
J
,
Chen
X
,
Herjan
T
,
Li
X
.
The role of interleukin-17 in tumor development and progression
.
J Exp Med
.
2020
;
217
(
1
):
e20190297
.
26.
Castro
G
,
Liu
X
,
Ngo
K
, et al
.
RORγt and RORα signature genes in human Th17 cells
.
PLoS One
.
2017
;
12
(
8
):
e0181868
.
27.
Zhang
Z
,
Li
X
,
Guo
J
, et al
.
Interleukin-17 enhances the production of interferon-γ and tumour necrosis factor-α by bone marrow T lymphocytes from patients with lower risk myelodysplastic syndromes
.
Eur J Haematol
.
2013
;
90
(
5
):
375
-
384
.
28.
Kordasti
SY
,
Afzali
B
,
Lim
Z
, et al
.
IL-17-producing CD4(+) T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome
.
Br J Haematol
.
2009
;
145
(
1
):
64
-
72
.
29.
Hossein-Khannazer
N
,
Zian
Z
,
Bakkach
J
, et al
.
Features and roles of T helper 22 cells in immunological diseases and malignancies
.
Scand J Immunol
.
2021
;
93
(
5
):
e13030
.
30.
Jiang
S
,
Dong
C
.
A complex issue on CD4(+) T-cell subsets
.
Immunol Rev
.
2013
;
252
(
1
):
5
-
11
.
31.
Saxton
RA
,
Henneberg
LT
,
Calafiore
M
, et al
.
The tissue protective functions of interleukin-22 can be decoupled from pro-inflammatory actions through structure-based design
.
Immunity
.
2021
;
54
(
4
):
660
-
672.e9
.
32.
Yamamoto-Furusho
JK
,
Miranda-Pérez
E
,
Fonseca-Camarillo
G
,
Sánchez-Muñoz
F
,
Dominguez-Lopez
A
,
Barreto-Zuñiga
R
.
Colonic epithelial upregulation of interleukin 22 (IL-22) in patients with ulcerative colitis
.
Inflamm Bowel Dis
.
2010
;
16
(
11
):
1823
.
33.
Shao
LL
,
Zhang
L
,
Hou
Y
, et al
.
Th22 cells as well as Th17 cells expand differentially in patients with early-stage and late-stage myelodysplastic syndrome
.
PLoS One
.
2012
;
7
(
12
):
e51339
.
34.
Jogdand
GM
,
Mohanty
S
,
Devadas
S
.
Regulators of Tfh cell differentiation
.
Front Immunol
.
2016
;
7
:
520
.
35.
Qi
H
.
T follicular helper cells in space-time
.
Nat Rev Immunol
.
2016
;
16
(
10
):
612
-
625
.
36.
Kazanietz
MG
,
Durando
M
,
Cooke
M
.
CXCL13 and its receptor CXCR5 in cancer: inflammation, immune response, and beyond
.
Front Endocrinol (Lausanne)
.
2019
;
10
:
471
.
37.
Lampropoulou
P
,
Verigou
E
,
Symeonidis
A
,
Gogos
C
,
Solomou
EE
.
Characterization of T follicular helper cells in patients with low risk myelodysplastic syndromes
.
Blood
.
2013
;
122
(
21
):
4729
.
38.
Lin
YW
,
Slape
C
,
Zhang
Z
,
Aplan
PD
.
NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia
.
Blood
.
2005
;
106
(
1
):
287
-
295
.
39.
Jiang
H
,
Cui
N
,
Yang
L
, et al
.
Altered follicular helper T cell impaired antibody production in a murine model of myelodysplastic syndromes
.
Oncotarget
.
2017
;
8
(
58
):
98270
-
98279
.
40.
Xiao
N
,
He
X
,
Niu
H
, et al
.
Increased circulating CD4(+)CXCR5(+) cells and IgG4 levels in patients with myelodysplastic syndrome with autoimmune diseases
.
J Immunol Res
.
2021
;
2021
:
4302515
.
41.
Zou
W
.
Regulatory T cells, tumour immunity and immunotherapy
.
Nat Rev Immunol
.
2006
;
6
(
4
):
295
-
307
.
42.
Shevyrev
D
,
Tereshchenko
V
.
Treg heterogeneity, function, and homeostasis
.
Front Immunol
.
2019
;
10
:
3100
.
43.
Wang
C
,
Yang
Y
,
Gao
S
, et al
.
Immune dysregulation in myelodysplastic syndrome: clinical features, pathogenesis and therapeutic strategies
.
Crit Rev Oncol Hematol
.
2018
;
122
:
123
-
132
.
44.
Aggarwal
S
,
van de Loosdrecht
AA
,
Alhan
C
,
Ossenkoppele
GJ
,
Westers
TM
,
Bontkes
HJ
.
Role of immune responses in the pathogenesis of low-risk MDS and high-risk MDS: implications for immunotherapy
.
Br J Haematol
.
2011
;
153
(
5
):
568
-
581
.
45.
Nishikawa
H
,
Koyama
S
.
Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies
.
J Immunother Cancer
.
2021
;
9
(
7
):
e002591
.
46.
Kordasti
SY
,
Ingram
W
,
Hayden
J
, et al
.
CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS)
.
Blood
.
2007
;
110
(
3
):
847
-
850
.
47.
Giovazzino
A
,
Leone
S
,
Rubino
V
, et al
.
Reduced regulatory T cells (Treg) in bone marrow preferentially associate with the expansion of cytotoxic T lymphocytes in low risk MDS patients
.
Br J Haematol
.
2019
;
185
(
2
):
357
-
360
.
48.
Kotsianidis
I
,
Bouchliou
I
,
Nakou
E
, et al
.
Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS)
.
Leukemia
.
2009
;
23
(
3
):
510
-
518
.
49.
Lambert
C
,
Wu
Y
,
Aanei
C
.
Bone marrow immunity and myelodysplasia
.
Front Oncol
.
2016
;
6
:
172
.
50.
Hamdi
W
,
Ogawara
H
,
Handa
H
,
Tsukamoto
N
,
Nojima
Y
,
Murakami
H
.
Clinical significance of regulatory T cells in patients with myelodysplastic syndrome
.
Eur J Haematol
.
2009
;
82
(
3
):
201
-
207
.
51.
Raskov
H
,
Orhan
A
,
Christensen
JP
,
Gögenur
I
.
Cytotoxic CD8+ T cells in cancer and cancer immunotherapy
.
Br J Cancer
.
2021
;
124
(
2
):
359
-
367
.
52.
Szabo
PA
,
Levitin
HM
,
Miron
M
, et al
.
Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease
.
Nat Commun
.
2019
;
10
(
1
):
4706
.
53.
Philip
M
,
Schietinger
A
.
CD8+ T cell differentiation and dysfunction in cancer
.
Nat Rev Immunol
.
2022
;
22
(
4
):
209
-
223
.
54.
Geerman
S
,
Brasser
G
,
Bhushal
S
, et al
.
Memory CD8(+) T cells support the maintenance of hematopoietic stem cells in the bone marrow
.
Haematologica
.
2018
;
103
(
6
):
e230
-
e233
.
55.
Lopes
MR
,
Traina
F
,
Campos
PdM
, et al
.
IL10 inversely correlates with the percentage of CD8⁺ cells in MDS patients
.
Leuk Res
.
2013
;
37
(
5
):
541
-
546
.
56.
Zheng
Z
,
Qianqiao
Z
,
Qi
H
,
Feng
X
,
Chunkang
C
,
Xiao
L
.
In vitro deprivation of CD8+ CD57+ T cells promotes the malignant growth of bone marrow colony cells in patients with lower-risk myelodysplastic syndrome
.
Exp Hematol
.
2010
;
38
(
8
):
677
-
684
.
57.
Yang
H
,
Bueso-Ramos
C
,
DiNardo
C
, et al
.
Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents
.
Leukemia
.
2014
;
28
(
6
):
1280
-
1288
.
58.
Sand
K
,
Theorell
J
,
Bruserud
Ø
,
Bryceson
YT
,
Kittang
AO
.
Reduced potency of cytotoxic T lymphocytes from patients with high-risk myelodysplastic syndromes
.
Cancer Immunol Immunother
.
2016
;
65
(
9
):
1135
-
1147
.
59.
Colonna-Romano
G
,
Aquino
A
,
Bulati
M
, et al
.
Impairment of gamma/delta T lymphocytes in elderly: implications for immunosenescence
.
Exp Gerontol
.
2004
;
39
(
10
):
1439
-
1446
.
60.
Hayday
AC
.
Gammadelta T cells and the lymphoid stress-surveillance response
.
Immunity
.
2009
;
31
(
2
):
184
-
196
.
61.
Kunzmann
V
,
Wilhelm
M
.
Anti-lymphoma effect of gammadelta T cells
.
Leuk Lymphoma
.
2005
;
46
(
5
):
671
-
680
.
62.
Zhao
Y
,
Niu
C
,
Cui
J
.
Gamma-delta (γδ) T cells: friend or foe in cancer development?
.
J Transl Med
.
2018
;
16
(
1
):
3
.
63.
Mensurado
S
,
Blanco-Domínguez
R
,
Silva-Santos
B
.
The emerging roles of γδ T cells in cancer immunotherapy
.
Nat Rev Clin Oncol
.
2023
;
20
(
3
):
178
-
191
.
64.
Kiladjian
JJ
,
Visentin
G
,
Viey
E
, et al
.
Activation of cytotoxic T-cell receptor γδ T lymphocytes in response to specific stimulation in myelodysplastic syndromes
.
Haematologica
.
2008
;
93
(
3
):
381
-
389
.
65.
Barreyro
L
,
Chlon
TM
,
Starczynowski
DT
.
Chronic immune response dysregulation in MDS pathogenesis
.
Blood
.
2018
;
132
(
15
):
1553
-
1560
.
66.
Sallman
DA
,
List
A
.
The central role of inflammatory signaling in the pathogenesis of myelodysplastic syndromes
.
Blood
.
2019
;
133
(
10
):
1039
-
1048
.
67.
Ganan-Gomez
I
,
Wei
Y
,
Starczynowski
DT
, et al
.
Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes
.
Leukemia
.
2015
;
29
(
7
):
1458
-
1469
.
68.
Mayle
A
,
Yang
L
,
Rodriguez
B
, et al
.
Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation
.
Blood
.
2015
;
125
(
4
):
629
-
638
.
69.
Li
Z
,
Cai
X
,
Cai
C-L
, et al
.
Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies
.
Blood
.
2011
;
118
(
17
):
4509
-
4518
.
70.
Pellicci
DG
,
Uldrich
AP
,
Le Nours
J
, et al
.
The molecular bases of δ/αβ T cell-mediated antigen recognition
.
J Exp Med
.
2014
;
211
(
13
):
2599
-
2615
.
71.
Naylor
K
,
Li
G
,
Vallejo
AN
, et al
.
The influence of age on T cell generation and TCR diversity
.
J Immunol
.
2005
;
174
(
11
):
7446
-
7452
.
72.
Young
NS
,
Maciejewski
JP
,
Sloand
E
, et al
.
The relationship of aplastic anemia and PNH
.
Int J Hematol
.
2002
;
76
(
Suppl 2
):
168
-
172
.
73.
Wechsler
J
,
Bagot
M
,
Nikolova
M
, et al
.
Killer cell immunoglobulin-like receptor expression delineates in situ Sézary syndrome lymphocytes
.
J Pathol
.
2003
;
199
(
1
):
77
-
83
.
74.
Kuhn
R
,
Sandu
I
,
Agrafiotis
A
, et al
.
Clonally expanded virus-specific CD8 T cells acquire diverse transcriptional phenotypes during acute, chronic, and latent infections
.
Front Immunol
.
2022
;
13
:
782441
.
75.
Kochenderfer
JN
,
Kobayashi
S
,
Wieder
ED
,
Su
C
,
Molldrem
JJ
.
Loss of T-lymphocyte clonal dominance in patients with myelodysplastic syndrome responsive to immunosuppression
.
Blood
.
2002
;
100
(
10
):
3639
-
3645
.
76.
Epperson
DE
,
Nakamura
R
,
Saunthararajah
Y
,
Melenhorst
J
,
Barrett
AJ
.
Oligoclonal T cell expansion in myelodysplastic syndrome: evidence for an autoimmune process
.
Leuk Res
.
2001
;
25
(
12
):
1075
-
1083
.
77.
Sloand
EM
,
Mainwaring
L
,
Fuhrer
M
, et al
.
Preferential suppression of trisomy 8 compared with normal hematopoietic cell growth by autologous lymphocytes in patients with trisomy 8 myelodysplastic syndrome
.
Blood
.
2005
;
106
(
3
):
841
-
851
.
78.
Wlodarski
MW
,
Gondek
LP
,
Nearman
ZP
, et al
.
Molecular strategies for detection and quantitation of clonal cytotoxic T-cell responses in aplastic anemia and myelodysplastic syndrome
.
Blood
.
2006
;
108
(
8
):
2632
-
2641
.
79.
Fozza
C
,
Contini
S
,
Galleu
A
, et al
.
Patients with myelodysplastic syndromes display several T-cell expansions, which are mostly polyclonal in the CD4(+) subset and oligoclonal in the CD8(+) subset
.
Exp Hematol
.
2009
;
37
(
8
):
947
-
955
.
80.
Fozza
C
,
Corda
G
,
Barraqueddu
F
, et al
.
Azacitidine improves the T-cell repertoire in patients with myelodysplastic syndromes and acute myeloid leukemia with multilineage dysplasia
.
Leuk Res
.
2015
;
39
(
9
):
957
-
963
.
81.
Abbas
HA
,
Reville
PK
,
Jiang
X
, et al
.
Response to hypomethylating agents in myelodysplastic syndrome is associated with emergence of novel TCR clonotypes
.
Front Immunol
.
2021
;
12
:
659625
.
82.
Hanahan
D
.
Hallmarks of cancer: new dimensions
.
Cancer Discov
.
2022
;
12
(
1
):
31
-
46
.
83.
Fane
M
,
Weeraratna
AT
.
How the ageing microenvironment influences tumour progression
.
Nat Rev Cancer
.
2020
;
20
(
2
):
89
-
106
.
84.
Seidel
JA
,
Otsuka
A
,
Kabashima
K
.
Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations
.
Front Oncol
.
2018
;
8
:
86
.
85.
Meng
F
,
Li
L
,
Lu
F
, et al
.
Overexpression of TIGIT in NK and T cells contributes to tumor immune escape in myelodysplastic syndromes
.
Front Oncol
.
2020
;
10
:
1595
.
86.
Haroun
F
,
Solola
SA
,
Nassereddine
S
,
Tabbara
I
.
PD-1 signaling and inhibition in AML and MDS
.
Ann Hematol
.
2017
;
96
(
9
):
1441
-
1448
.
87.
Coats
T
,
Smith
Ae
,
Mourikis
TP
,
Irish
JM
,
Kordasti
S
,
Mufti
GJ
.
Mass cytometry reveals PD1 upregulation is an early step in MDS disease progression
.
Blood
.
2016
;
128
(
22
):
4296
.
88.
Tcvetkov
NY
,
Morozova
EV
,
Epifanovskaya
OS
, et al
.
Profile of checkpoint molecules expression on bone marrow cell populations in patients with high-risk myelodysplastic syndrome
.
Blood
.
2020
;
136
(
suppl 1
):
43
-
44
.
89.
Kitagawa
M
,
Saito
I
,
Kuwata
T
, et al
.
Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes
.
Leukemia
.
1997
;
11
(
12
):
2049
-
2054
.
90.
Stifter
G
,
Heiss
S
,
Gastl
G
,
Tzankov
A
,
Stauder
R
.
Over-expression of tumor necrosis factor-alpha in bone marrow biopsies from patients with myelodysplastic syndromes: relationship to anemia and prognosis
.
Eur J Haematol
.
2005
;
75
(
6
):
485
-
491
.
91.
Basiorka
AA
,
McGraw
KL
,
Eksioglu
EA
, et al
.
The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype
.
Blood
.
2016
;
128
(
25
):
2960
-
2975
.
92.
Thompson
CB
,
Allison
JP
.
The emerging role of CTLA-4 as an immune attenuator
.
Immunity
.
1997
;
7
(
4
):
445
-
450
.
93.
Aref
S
,
El Agdar
M
,
El Sebaie
A
,
Abouzeid
T
,
Sabry
M
,
Ibrahim
L
.
Prognostic value of CD200 expression and soluble CTLA-4 concentrations in intermediate and high-risk myelodysplastic syndrome patients
.
Asian Pac J Cancer Prev
.
2020
;
21
(
8
):
2225
-
2230
.
94.
Tao
J
,
Li
L
,
Wang
Y
,
Fu
R
,
Wang
H
,
Shao
Z
.
Increased TIM3+CD8+T cells in myelodysplastic syndrome patients displayed less perforin and granzyme B secretion and higher CD95 expression
.
Leuk Res
.
2016
;
51
:
49
-
55
.
95.
Fu
R
,
Li
L
,
Hu
J
, et al
.
Elevated TIM3 expression of T helper cells affects immune system in patients with myelodysplastic syndrome
.
J Investig Med
.
2019
;
67
(
8
):
1125
-
1130
.
96.
Tcvetkov
N
,
Gusak
A
,
Morozova
E
, et al
.
Immune checkpoints bone marrow expression as the predictor of clinical outcome in myelodysplastic syndrome
.
Leuk Res Rep
.
2020
;
14
:
100215
.
97.
Zeidan
AM
,
Giagounidis
A
,
Sekeres
MA
, et al
.
STIMULUS-MDS2 design and rationale: a phase III trial with the anti-TIM-3 sabatolimab (MBG453) + azacitidine in higher risk MDS and CMML-2
.
Future Oncol
.
2023
;
19
(
9
):
631
-
642
.
98.
Garcia-Manero
G
,
Chien
KS
,
Montalban-Bravo
G
.
Myelodysplastic syndromes: 2021 update on diagnosis, risk stratification and management
.
Am J Hematol
.
2020
;
95
(
11
):
1399
-
1420
.
99.
Rodriguez-Sevilla
JJ
,
Adema
V
,
Garcia-Manero
G
,
Colla
S
.
Emerging treatments for myelodysplastic syndromes: biological rationales and clinical translation
.
Cell Rep Med
.
2023
;
4
(
2
):
100940
.
100.
Garcia-Manero
G
,
Ribrag
V
,
Zhang
Y
,
Farooqui
M
,
Marinello
P
,
Smith
BD
.
Pembrolizumab for myelodysplastic syndromes after failure of hypomethylating agents in the phase 1b KEYNOTE-013 study
.
Leuk Lymphoma
.
2022
;
63
(
7
):
1660
-
1668
.
101.
Chien
KS
,
Kim
K
,
Nogueras-Gonzalez
GM
, et al
.
Phase II study of azacitidine with pembrolizumab in patients with intermediate-1 or higher-risk myelodysplastic syndrome
.
Br J Haematol
.
2021
;
195
(
3
):
378
-
387
.
102.
Garcia-Manero
G
,
Sasaki
K
,
Montalban-Bravo
G
, et al
.
A phase II study of nivolumab or ipilimumab with or without azacitidine for patients with myelodysplastic syndrome (MDS)
.
Blood
.
2018
;
132
(
suppl 1
):
465-465
.
103.
Morita
K
,
Kantarjian
HM
,
Montalban Bravo
G
, et al
.
A phase II study of double immune checkpoint inhibitor blockade with nivolumab and ipilimumab with or without azacitidine in patients with myelodysplastic syndrome (MDS)
.
Blood
.
2020
;
136
(
suppl 1
):
7
-
9
.
104.
Brunner
AM
,
Esteve
J
,
Porkka
K
, et al
.
Efficacy and safety of sabatolimab (MBG453) in combination with hypomethylating agents (HMAs) in patients (Pts) with very high/high-risk myelodysplastic syndrome (vHR/HR-MDS) and acute myeloid leukemia (AML): final analysis from a phase Ib study
.
Blood
.
2021
;
138
(
suppl 1
):
244
.
105.
Zeidan
AM
,
Ando
K
,
Rauzy
O
, et al
.
Sabatolimab plus hypomethylating agents in previously untreated patients with higher-risk myelodysplastic syndromes (STIMULUS-MDS1): a randomised, double-blind, placebo-controlled, phase 2 trial
.
Lancet Haematol
.
2024
;
11
(
1
):
e38
-
e50
.
106.
Sallman
DA
,
Kerre
T
,
Havelange
V
, et al
.
CYAD-01, an autologous NKG2D-based CAR T-cell therapy, in relapsed or refractory acute myeloid leukaemia and myelodysplastic syndromes or multiple myeloma (THINK): haematological cohorts of the dose escalation segment of a phase 1 trial
.
Lancet Haematol
.
2023
;
10
(
3
):
e191
-
e202
.
107.
Sallman
DA
,
Elmariah
H
,
Sweet
K
, et al
.
Phase 1/1b safety study of Prgn-3006 Ultracar-T in patients with relapsed or refractory CD33-positive acute myeloid leukemia and higher risk myelodysplastic syndromes
.
Blood
.
2022
;
140
(
suppl 1
):
10313
-
10315
.
108.
Vey
N
,
Davidson-Moncada
J
,
Uy
GL
, et al
.
Interim results from a phase 1 first-in-human study of flotetuzumab, a CD123 × CD3 bispecific DART molecule, in AML/MDS
.
Ann Oncol
.
2017
;
28
(
suppl 5
):
v355
.
109.
Vey
N
,
Davidson-Moncada
J
,
Uy
GL
, et al
.
Interim results from a Phase 1 First-in-Human Study of Flotetuzumab, a CD123 × CD3 Bispecific DART® Molecule, in AML/MDS
.
ESMO
.
2017
.
110.
Uckun
FM
,
Watts
J
,
Mims
AS
, et al
.
A clinical phase 1B study of the CD3xCD123 bispecific antibody APVO436 in patients with relapsed/refractory acute myeloid leukemia or myelodysplastic syndrome
.
Cancers (Basel)
.
2021
;
13
(
21
):
5287
.
111.
Nguyen
D
,
Ravandi
F
,
Wang
SA
, et al
.
A phase II study of vibecotamab, a CD3-CD123 bispecific T-cell engaging antibody, for MDS or CMML after hypomethylating failure and in MRD-positive AML
.
Blood
.
2023
;
142
(
suppl 1
):
322
.
112.
Nair-Gupta
P
,
Diem
M
,
Reeves
D
, et al
.
A novel C2 domain binding CD33xCD3 bispecific antibody with potent T-cell redirection activity against acute myeloid leukemia
.
Blood Adv
.
2020
;
4
(
5
):
906
-
919
.
113.
Garcia-Manero
G
,
Jacoby
M
,
Sallman
DA
,
Han
T
,
Guenot
J
,
Feldman
E
.
A phase I study of AMV564 in patients with intermediate or high-risk myelodysplastic syndromes
.
J Clin Oncol
.
2019
;
37
(
suppl 15
):
TPS7071
.
114.
Neelapu
SS
,
Locke
FL
,
Bartlett
NL
, et al
.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
.
N Engl J Med
.
2017
;
377
(
26
):
2531
-
2544
.
115.
Schuster
SJ
,
Bishop
MR
,
Tam
CS
, et al
.
Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma
.
N Engl J Med
.
2019
;
380
(
1
):
45
-
56
.
116.
Abramson
JS
,
Palomba
ML
,
Gordon
LI
, et al
.
Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study
.
Lancet
.
2020
;
396
(
10254
):
839
-
852
.
117.
Chua
CC
,
Cheok
KPL
.
Taking a step forward in CAR T-cell therapy for acute myeloid leukaemia and myelodysplastic syndrome
.
Lancet Haematol
.
2023
;
10
(
3
):
e161
-
e162
.
118.
Stevens
BM
,
Zhang
W
,
Pollyea
DA
, et al
.
CD123 CAR T cells for the treatment of myelodysplastic syndrome
.
Exp Hematol
.
2019
;
74
:
52
-
63.e3
.
119.
Kenderian
SS
,
Ruella
M
,
Shestova
O
, et al
.
CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia
.
Leukemia
.
2015
;
29
(
8
):
1637
-
1647
.
120.
Liu
H
,
Wang
S
,
Xin
J
,
Wang
J
,
Yao
C
,
Zhang
Z
.
Role of NKG2D and its ligands in cancer immunotherapy
.
Am J Cancer Res
.
2019
;
9
(
10
):
2064
-
2078
.
121.
Diermayr
S
,
Himmelreich
H
,
Durovic
B
, et al
.
NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities
.
Blood
.
2008
;
111
(
3
):
1428
-
1436
.
122.
Driouk
L
,
Gicobi
J
,
Kamihara
Y
, et al
.
Chimeric antigen receptor T cells targeting NKG2D-ligands show robust efficacy against acute myeloid leukemia and T-cell acute lymphoblastic leukemia
.
Blood
.
2019
;
134
(
suppl 1
):
1930
-
1931
.
123.
Heine
R
,
Thielen
FW
,
Koopmanschap
M
, et al
.
Health economic aspects of chimeric antigen receptor T-cell therapies for hematological cancers: present and future
.
Hemasphere
.
2021
;
5
(
2
):
e524
.
124.
Depil
S
,
Duchateau
P
,
Grupp
SA
,
Mufti
G
,
Poirot
L
.
'Off-the-shelf' allogeneic CAR T cells: development and challenges
.
Nat Rev Drug Discov
.
2020
;
19
(
3
):
185
-
199
.
125.
Buccheri
S
,
Guggino
G
,
Caccamo
N
,
Li Donni
P
,
Dieli
F
.
Efficacy and safety of γδT cell-based tumor immunotherapy: a meta-analysis
.
J Biol Regul Homeost Agents
.
2014
;
28
(
1
):
81
-
90
.
126.
Haber
L
,
Olson
K
,
Kelly
MP
, et al
.
Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning
.
Sci Rep
.
2021
;
11
(
1
):
14397
.
127.
Allen
C
,
Zeidan
AM
,
Bewersdorf
JP
.
BiTEs, DARTS, BiKEs and TriKEs-are antibody based therapies changing the future treatment of AML?
.
Life (Basel)
.
2021
;
11
(
6
):
465
.
128.
Teramura
M
,
Kimura
A
,
Iwase
S
, et al
.
Treatment of severe aplastic anemia with antithymocyte globulin and cyclosporin A with or without G-CSF in adults: a multicenter randomized study in Japan
.
Blood
.
2007
;
110
(
6
):
1756
-
1761
.
129.
Tsuda
K
,
Yamanaka
K
,
Kitagawa
H
, et al
.
Calcineurin inhibitors suppress cytokine production from memory T cells and differentiation of naïve T cells into cytokine-producing mature T cells
.
PLoS One
.
2012
;
7
(
2
):
e31465
.
130.
Mohty
M
.
Mechanisms of action of antithymocyte globulin: T-cell depletion and beyond
.
Leukemia
.
2007
;
21
(
7
):
1387
-
1394
.
131.
NCCN Guidelines Version Myelodysplastic Syndromes (1.2023).
National Comprehensive Cancer Network
;
2023
.
132.
Haider
M
,
Al Ali
N
,
Padron
E
, et al
.
Immunosuppressive therapy: exploring an underutilized treatment option for myelodysplastic syndrome
.
Clin Lymphoma Myeloma Leuk
.
2016
(
16 suppl
):
S44
-
S48
.
133.
Stahl
M
,
Bewersdorf
JP
,
Giri
S
,
Wang
R
,
Zeidan
AM
.
Use of immunosuppressive therapy for management of myelodysplastic syndromes: a systematic review and meta-analysis
.
Haematologica
.
2020
;
105
(
1
):
102
-
111
.
You do not currently have access to this content.
Sign in via your Institution