• DLBCL-associated NOTCH2 mutations evade ubiquitin-dependent degradation via the E3 ligases KLHL6 and FBXW7 and promote chemoresistance.

  • Inhibition of γ-secretase and AKT with nirogacestat and ipatasertib synergistically promotes CHOP-resistant DLBCL destruction.

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma. Up to 40% of patients with DLBCL display refractory disease or relapse after standard chemotherapy treatment (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone [R-CHOP]), leading to significant morbidity and mortality. The molecular mechanisms of chemoresistance in DLBCL remain incompletely understood. Using a cullin–really interesting new gene (RING) ligase-based CRISPR-Cas9 library, we identify that inactivation of the E3 ubiquitin ligase KLHL6 promotes DLBCL chemoresistance. Furthermore, proteomic approaches helped identify KLHL6 as a novel master regulator of plasma membrane–associated NOTCH2 via proteasome-dependent degradation. In CHOP-resistant DLBCL tumors, mutations of NOTCH2 result in a protein that escapes the mechanism of ubiquitin-dependent proteolysis, leading to protein stabilization and activation of the oncogenic RAS signaling pathway. Targeting CHOP-resistant DLBCL tumors with the phase 3 clinical trial molecules nirogacestat, a selective γ-secretase inhibitor, and ipatasertib, a pan-AKT inhibitor, synergistically promotes DLBCL destruction. These findings establish the rationale for therapeutic strategies aimed at targeting the oncogenic pathway activated in KLHL6- or NOTCH2-mutated DLBCL.

1.
Sabattini
E
,
Bacci
F
,
Sagramoso
C
,
Pileri
SA
.
WHO classification of tumours of haematopoietic and lymphoid tissues in 2008: an overview
.
Pathologica
.
2010
. ;
102
(
3
):
83
-
87
.
2.
Teras
LR
,
DeSantis
CE
,
Cerhan
JR
,
Morton
LM
,
Jemal
A
,
Flowers
CR
.
US lymphoid malignancy statistics by World Health Organization subtypes
.
CA Cancer J Clin
.
2016
. ;
66
(
6
):
443
-
459
.
3.
Alizadeh
AA
,
Eisen
MB
,
Davis
RE
, et al
.
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
.
Nature
.
2000
. ;
403
(
6769
):
503
-
511
.
4.
Rosenwald
A
,
Wright
G
,
Leroy
K
, et al
.
Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma
.
J Exp Med
.
2003
. ;
198
(
6
):
851
-
862
.
5.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med
.
2018
. ;
378
(
15
):
1396
-
1407
.
6.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes
.
Nat Med
.
2018
. ;
24
(
5
):
679
-
690
.
7.
Coiffier
B
,
Lepage
E
,
Briere
J
, et al
.
CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma
.
N Engl J Med
.
2002
. ;
346
(
4
):
235
-
242
.
8.
Pfreundschuh
M
,
Trumper
L
,
Osterborg
A
, et al
.
CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group
.
Lancet Oncol
.
2006
. ;
7
(
5
):
379
-
391
.
9.
Pfreundschuh
M
,
Schubert
J
,
Ziepert
M
, et al
.
Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60)
.
Lancet Oncol
.
2008
. ;
9
(
2
):
105
-
116
.
10.
Huntington
S
,
Keshishian
A
,
McGuire
M
,
Xie
L
,
Baser
O
.
Costs of relapsed diffuse large B-cell lymphoma among Medicare patients
.
Leuk Lymphoma
.
2018
. ;
59
(
12
):
2880
-
2887
.
11.
Camicia
R
,
Winkler
HC
,
Hassa
PO
.
Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review
.
Mol Cancer
.
2015
. ;
14
:
207
.
12.
Yang
Y
,
Staudt
LM
.
Protein ubiquitination in lymphoid malignancies
.
Immunol Rev
.
2015
. ;
263
(
1
):
240
-
256
.
13.
Milhollen
MA
,
Traore
T
,
Adams-Duffy
J
, et al
.
MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-kappa B-dependent lymphoma
.
Blood
.
2010
. ;
116
(
9
):
1515
-
1523
.
14.
Shah
JJ
,
Jakubowiak
AJ
,
O'Connor
OA
, et al
.
Phase 1 dose-escalation study of MLN4924, a novel NAE inhibitor, in patients with multiple myeloma and non-Hodgkin lymphoma
.
Blood
.
2009
. ;
114
(
22
):
735
-
736
.
15.
Nangle
S
,
Xing
W
,
Zheng
N
.
Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase
.
Cell Res
.
2013
. ;
23
(
12
):
1417
-
1419
.
16.
Winter
GE
,
Buckley
DL
,
Paulk
J
, et al
.
DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation
.
Science
.
2015
. ;
348
(
6241
):
1376
-
1381
.
17.
Fischer
ES
,
Bohm
K
,
Lydeard
JR
, et al
.
Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide
.
Nature
.
2014
. ;
512
(
7512
):
49
-
53
.
18.
Han
T
,
Goralski
M
,
Gaskill
N
, et al
.
Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15
.
Science
.
2017
. ;
356
(
6336
):
eaal3755
.
19.
Lu
J
,
Qian
Y
,
Altieri
M
, et al
.
Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4
.
Chem Biol
.
2015
. ;
22
(
6
):
755
-
763
.
20.
Petroski
MD
,
Deshaies
RJ
.
Function and regulation of cullin-RING ubiquitin ligases
.
Nat Rev Mol Cell Biol
.
2005
. ;
6
(
1
):
9
-
20
.
21.
Cardozo
T
,
Pagano
M
.
The SCF ubiquitin ligase: insights into a molecular machine
.
Nat Rev Mol Cell Biol
.
2004
. ;
5
(
9
):
739
-
751
.
22.
Zhou
N
,
Gutierrez-Uzquiza
A
,
Zheng
XY
, et al
.
RUNX proteins desensitize multiple myeloma to lenalidomide via protecting IKZFs from degradation
.
Leukemia
.
2019
. ;
33
(
8
):
2006
-
2021
.
23.
McKelvey
EM
,
Gottlieb
JA
,
Wilson
HE
, et al
.
Hydroxyldaunomycin (adriamycin) combination chemotherapy in malignant lymphoma
.
Cancer
.
1976
. ;
38
(
4
):
1484
-
1493
.
24.
Reddy
A
,
Zhang
J
,
Davis
NS
, et al
.
Genetic and functional drivers of diffuse large B cell lymphoma
.
Cell
.
2017
. ;
171
(
2
):
481
-
494.e15
.
25.
Choi
J
,
Lee
K
,
Ingvarsdottir
K
, et al
.
Loss of KLHL6 promotes diffuse large B-cell lymphoma growth and survival by stabilizing the mRNA decay factor roquin2
.
Nat Cell Biol
.
2018
. ;
20
(
5
):
586
-
596
.
26.
Mumm
JS
,
Kopan
R
.
Notch signaling: from the outside in
.
Dev Biol
.
2000
. ;
228
(
2
):
151
-
165
.
27.
van Tetering
G
,
Vooijs
M
.
Proteolytic cleavage of Notch: "HIT and RUN"
.
Curr Mol Med
.
2011
. ;
11
(
4
):
255
-
269
.
28.
Logeat
F
,
Bessia
C
,
Brou
C
, et al
.
The Notch1 receptor is cleaved constitutively by a furin-like convertase
.
Proc Natl Acad Sci U S A
.
1998
. ;
95
(
14
):
8108
-
8112
.
29.
van Tetering
G
,
van Diest
P
,
Verlaan
I
,
van der Wall
E
,
Kopan
R
,
Vooijs
M
.
Metalloprotease ADAM10 is required for Notch1 site 2 cleavage
.
J Biol Chem
.
2009
. ;
284
(
45
):
31018
-
31027
.
30.
Groot
AJ
,
Habets
R
,
Yahyanejad
S
, et al
.
Regulated proteolysis of NOTCH2 and NOTCH3 receptors by ADAM10 and presenilins
.
Mol Cell Biol
.
2014
. ;
34
(
15
):
2822
-
2832
.
31.
De Strooper
B
,
Annaert
W
,
Cupers
P
, et al
.
A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain
.
Nature
.
1999
. ;
398
(
6727
):
518
-
522
.
32.
Barretina
J
,
Caponigro
G
,
Stransky
N
, et al
.
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
.
Nature
.
2012
. ;
483
(
7391
):
603
-
607
.
33.
Ryan
RJH
,
Petrovic
J
,
Rausch
DM
, et al
.
A B cell regulome links notch to downstream oncogenic pathways in small B cell lymphomas
.
Cell Rep
.
2017
. ;
21
(
3
):
784
-
797
.
34.
Maillard
I
,
Schwarz
BA
,
Sambandam
A
, et al
.
Notch-dependent T-lineage commitment occurs at extrathymic sites following bone marrow transplantation
.
Blood
.
2006
. ;
107
(
9
):
3511
-
3519
.
35.
Schmitt
TM
,
Zuniga-Pflucker
JC
.
Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro
.
Immunity
.
2002
. ;
17
(
6
):
749
-
756
.
36.
O'Neil
J
,
Grim
J
,
Strack
P
, et al
.
FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors
.
J Exp Med
.
2007
. ;
204
(
8
):
1813
-
1824
.
37.
Thompson
BJ
,
Buonamici
S
,
Sulis
ML
, et al
.
The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia
.
J Exp Med
.
2007
. ;
204
(
8
):
1825
-
1835
.
38.
Chiang
MY
,
Xu
L
,
Shestova
O
, et al
.
Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia
.
J Clin Invest
.
2008
. ;
118
(
9
):
3181
-
3194
.
39.
Morin
RD
,
Mendez-Lago
M
,
Mungall
AJ
, et al
.
Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma
.
Nature
.
2011
. ;
476
(
7360
):
298
-
303
.
40.
Lohr
JG
,
Stojanov
P
,
Lawrence
MS
, et al
.
Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing
.
Proc Natl Acad Sci U S A
.
2012
. ;
109
(
10
):
3879
-
3884
.
41.
Kunder
CA
,
Roncador
G
,
Advani
RH
, et al
.
KLHL6 is preferentially expressed in germinal center-derived B-cell lymphomas
.
Am J Clin Pathol
.
2017
. ;
148
(
6
):
465
-
476
.
42.
Mareschal
S
,
Pham-Ledard
A
,
Viailly
PJ
, et al
.
Identification of somatic mutations in primary cutaneous diffuse large B-cell lymphoma, leg type by massive parallel sequencing
.
J Invest Dermatol
.
2017
. ;
137
(
9
):
1984
-
1994
.
43.
Yashiro-Ohtani
Y
,
Wang
H
,
Zang
C
, et al
.
Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia
.
Proc Natl Acad Sci U S A
.
2014
. ;
111
(
46
):
E4946
-
4953
.
44.
Herranz
D
,
Ambesi-Impiombato
A
,
Palomero
T
, et al
.
A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia
.
Nat Med
.
2014
. ;
20
(
10
):
1130
-
1137
.
45.
Dlouhy
I
,
Karube
K
,
Enjuanes
A
, et al
.
Revised international prognostic index and genetic alterations are associated with early failure to R-CHOP in patients with diffuse large B-cell lymphoma
.
Br J Haematol
.
2022
. ;
196
(
3
):
589
-
598
.
46.
Kummar
S
,
O'Sullivan Coyne
G
,
Do
KT
, et al
.
Clinical activity of the gamma-secretase inhibitor PF-03084014 in adults with desmoid tumors (aggressive fibromatosis)
.
J Clin Oncol
.
2017
. ;
35
(
14
):
1561
-
1569
.
47.
Gounder
M
,
Ratan
R
,
Alcindor
T
, et al
.
Nirogacestat, a gamma-secretase inhibitor for desmoid tumors
.
N Engl J Med
.
2023
. ;
388
(
10
):
898
-
912
.
48.
Bollag
G
,
Hirth
P
,
Tsai
J
, et al
.
Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma
.
Nature
.
2010
. ;
467
(
7315
):
596
-
599
.
49.
Yamaguchi
T
,
Kakefuda
R
,
Tajima
N
,
Sowa
Y
,
Sakai
T
.
Antitumor activities of JTP-74057 (GSK1120212), a novel MEK1/2 inhibitor, on colorectal cancer cell lines in vitro and in vivo
.
Int J Oncol
.
2011
. ;
39
(
1
):
23
-
31
.
50.
Ward
RA
,
Colclough
N
,
Challinor
M
, et al
.
Structure-guided design of highly selective and potent covalent inhibitors of ERK1/2
.
J Med Chem
.
2015
. ;
58
(
11
):
4790
-
4801
.
51.
Furet
P
,
Guagnano
V
,
Fairhurst
RA
, et al
.
Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation
.
Bioorg Med Chem Lett
.
2013
. ;
23
(
13
):
3741
-
3748
.
52.
Blake
JF
,
Xu
R
,
Bencsik
JR
, et al
.
Discovery and preclinical pharmacology of a selective ATP-competitive Akt inhibitor (GDC-0068) for the treatment of human tumors
.
J Med Chem
.
2012
. ;
55
(
18
):
8110
-
8127
.
53.
Lin
J
,
Sampath
D
,
Nannini
MA
, et al
.
Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models
.
Clin Cancer Res
.
2013
. ;
19
(
7
):
1760
-
1772
.
54.
de Bono
JS
,
De Giorgi
U
,
Rodrigues
DN
, et al
.
Randomized phase II study evaluating Akt blockade with ipatasertib, in combination with abiraterone, in patients with metastatic prostate cancer with and without PTEN loss
.
Clin Cancer Res
.
2019
. ;
25
(
3
):
928
-
936
.
55.
Shi
Z
,
Wulfkuhle
J
,
Nowicka
M
, et al
.
Functional mapping of AKT signaling and biomarkers of response from the FAIRLANE trial of neoadjuvant ipatasertib plus paclitaxel for triple-negative breast cancer
.
Clin Cancer Res
.
2022
. ;
28
(
5
):
993
-
1003
.
56.
Pasqualucci
L
,
Trifonov
V
,
Fabbri
G
, et al
.
Analysis of the coding genome of diffuse large B-cell lymphoma
.
Nat Genet
.
2011
. ;
43
(
9
):
830
-
837
.
57.
Ramis-Zaldivar
JE
,
Gonzalez-Farre
B
,
Balague
O
, et al
.
Distinct molecular profile of IRF4-rearranged large B-cell lymphoma
.
Blood
.
2020
. ;
135
(
4
):
274
-
286
.
58.
Chan
SM
,
Weng
AP
,
Tibshirani
R
,
Aster
JC
,
Utz
PJ
.
Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia
.
Blood
.
2007
. ;
110
(
1
):
278
-
286
.
59.
Palomero
T
,
Sulis
ML
,
Cortina
M
, et al
.
Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia
.
Nat Med
.
2007
. ;
13
(
10
):
1203
-
1210
.
60.
Hasselblom
S
,
Hansson
U
,
Olsson
M
, et al
.
High immunohistochemical expression of p-AKT predicts inferior survival in patients with diffuse large B-cell lymphoma treated with immunochemotherapy
.
Br J Haematol
.
2010
. ;
149
(
4
):
560
-
568
.
61.
Sweeney
C
,
Bracarda
S
,
Sternberg
CN
, et al
.
Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double-blind, phase 3 trial
.
Lancet
.
2021
. ;
398
(
10295
):
131
-
142
.
62.
Krop
IE
,
LoRusso
P
,
Miller
KD
, et al
.
A phase II study of trastuzumab emtansine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer who were previously treated with trastuzumab, lapatinib, an anthracycline, a taxane, and capecitabine
.
J Clin Oncol
.
2012
. ;
30
(
26
):
3234
-
3241
.
63.
Tolcher
AW
,
Messersmith
WA
,
Mikulski
SM
, et al
.
Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors
.
J Clin Oncol
.
2012
. ;
30
(
19
):
2348
-
2353
.
64.
Messersmith
WA
,
Shapiro
GI
,
Cleary
JM
, et al
.
A Phase I, dose-finding study in patients with advanced solid malignancies of the oral gamma-secretase inhibitor PF-03084014
.
Clin Cancer Res
.
2015
. ;
21
(
1
):
60
-
67
.
65.
Bousquet Mur
E
,
Bernardo
S
,
Papon
L
, et al
.
Notch inhibition overcomes resistance to tyrosine kinase inhibitors in EGFR-driven lung adenocarcinoma
.
J Clin Invest
.
2020
. ;
130
(
2
):
612
-
624
.
You do not currently have access to this content.
Sign in via your Institution