• A high-resolution single-cell map of diagnostic CML bone marrow to annotate features of TKI resistance.

  • Gene expression signatures within the LSCs and NK cells are indicative of TKI response.

Primary resistance to tyrosine kinase inhibitors (TKIs) is a significant barrier to optimal outcomes in chronic myeloid leukemia (CML), but factors contributing to response heterogeneity remain unclear. Using single-cell RNA (scRNA) sequencing, we identified 8 statistically significant features in pretreatment bone marrow, which correlated with either sensitivity (major molecular response or MMR) or extreme resistance to imatinib (eventual blast crisis [BC] transformation). Employing machine-learning, we identified leukemic stem cell (LSC) and natural killer (NK) cell gene expression profiles predicting imatinib response with >80% accuracy, including no false positives for predicting BC. A canonical erythroid-specifying (TAL1/KLF1/GATA1) regulon was a hallmark of LSCs from patients with MMR and was associated with erythroid progenitor [ERP] expansion in vivo (P < .05), and a 2- to 10-fold (6.3-fold in group A vs 1.09-fold in group C) erythroid over myeloid bias in vitro. Notably, ERPs demonstrated exquisite TKI sensitivity compared with myeloid progenitors (P < .001). These LSC features were lost with progressive resistance, and MYC- and IRF1-driven inflammatory regulons were evident in patients who progressed to transformation. Patients with MMR also exhibited a 56-fold expansion (P < .01) of a normally rare subset of hyperfunctional adaptive-like NK cells, which diminished with progressive resistance, whereas patients destined for BC accumulated inhibitory NKG2A+ NK cells favoring NK cell tolerance. Finally, we developed antibody panels to validate our scRNA-seq findings. These panels may be useful for prospective studies of primary resistance, and in assessing the contribution of predetermined vs acquired factors in TKI response heterogeneity.

1.
Rowley
JD
.
Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining
.
Nature
.
1973
;
243
(
5405
):
290
-
293
.
2.
Braun
TP
,
Eide
CA
,
Druker
BJ
.
Response and resistance to BCR-ABL1-targeted therapies
.
Cancer Cell
.
2020
;
37
(
4
):
530
-
542
.
3.
Holyoake
TL
,
Vetrie
D
.
The chronic myeloid leukemia stem cell: stemming the tide of persistence
.
Blood
.
2017
;
129
(
12
):
1595
-
1606
.
4.
Shanmuganathan
N
,
Pagani
IS
,
Ross
DM
, et al
.
Early BCR-ABL1 kinetics are predictive of subsequent achievement of treatment-free remission in chronic myeloid leukemia
.
Blood
.
2021
;
137
(
9
):
1196
-
1207
.
5.
Hanfstein
B
,
Shlyakhto
V
,
Lauseker
M
, et al
.
Velocity of early BCR-ABL transcript elimination as an optimized predictor of outcome in chronic myeloid leukemia (CML) patients in chronic phase on treatment with imatinib
.
Leukemia
.
2014
;
28
(
10
):
1988
-
1992
.
6.
Iriyama
N
,
Fujisawa
S
,
Yoshida
C
, et al
.
Shorter halving time of BCR-ABL1 transcripts is a novel predictor for achievement of molecular responses in newly diagnosed chronic-phase chronic myeloid leukemia treated with dasatinib: results of the D-first study of Kanto CML study group
.
Am J Hematol
.
2015
;
90
(
4
):
282
-
287
.
7.
Krishnan
V
,
Kim
DDH
,
Hughes
TP
,
Branford
S
,
Ong
ST
.
Integrating genetic and epigenetic factors in chronic myeloid leukemia risk assessment: toward gene expression-based biomarkers
.
Haematologica
.
2022
;
107
(
2
):
358
-
370
.
8.
McWeeney
SK
,
Pemberton
LC
,
Loriaux
MM
, et al
.
A gene expression signature of CD34+ cells to predict major cytogenetic response in chronic-phase chronic myeloid leukemia patients treated with imatinib
.
Blood
.
2010
;
115
(
2
):
315
-
325
.
9.
Yong
ASM
,
Szydlo
RM
,
Goldman
JM
,
Apperley
JF
,
Melo
JV
.
Molecular profiling of CD34+ cells identifies low expression of CD7, along with high expression of proteinase 3 or elastase, as predictors of longer survival in patients with CML
.
Blood
.
2006
;
107
(
1
):
205
-
212
.
10.
Ko
TK
,
Javed
A
,
Lee
KL
, et al
.
An integrative model of pathway convergence in genetically heterogeneous blast crisis chronic myeloid leukemia
.
Blood
.
2020
;
135
(
26
):
2337
-
2353
.
11.
Hughes
A
,
Clarson
J
,
Tang
C
, et al
.
CML patients with deep molecular responses to TKI have restored immune effectors and decreased PD-1 and immune suppressors
.
Blood
.
2017
;
129
(
9
):
1166
-
1176
.
12.
Bruck
O
,
Blom
S
,
Dufva
O
, et al
.
Immune cell contexture in the bone marrow tumor microenvironment impacts therapy response in CML
.
Leukemia
.
2018
;
32
(
7
):
1643
-
1656
.
13.
Hsieh
YC
,
Kirschner
K
,
Copland
M
.
Improving outcomes in chronic myeloid leukemia through harnessing the immunological landscape
.
Leukemia
.
2021
;
35
(
5
):
1229
-
1242
.
14.
Schmidt
F
,
Kern
F
,
Ebert
P
,
Baumgarten
N
,
Schulz
MH
.
TEPIC 2-an extended framework for transcription factor binding prediction and integrative epigenomic analysis
.
Bioinformatics
.
2019
;
35
(
9
):
1608
-
1609
.
15.
Aibar
S
,
Gonzalez-Blas
CB
,
Moerman
T
, et al
.
SCENIC: single-cell regulatory network inference and clustering
.
Nat Methods
.
2017
;
14
(
11
):
1083
-
1086
.
16.
Hou
R
,
Denisenko
E
,
Ong
HT
,
Ramilowski
JA
,
Forrest
ARR
.
Predicting cell-to-cell communication networks using NATMI
.
Nat Commun
.
2020
;
11
(
1
):
5011
.
17.
Pellin
D
,
Loperfido
M
,
Baricordi
C
, et al
.
A comprehensive single cell transcriptional landscape of human hematopoietic progenitors
.
Nat Commun
.
2019
;
10
(
1
):
2395
.
18.
Psaila
B
,
Wang
G
,
Rodriguez-Meira
A
, et al
.
Single-cell analyses reveal megakaryocyte-biased hematopoiesis in myelofibrosis and identify mutant clone-specific targets
.
Mol Cell
.
2020
;
78
(
3
):
477
-
492.e8
.
19.
Velten
L
,
Haas
SF
,
Raffel
S
, et al
.
Human haematopoietic stem cell lineage commitment is a continuous process
.
Nat Cell Biol
.
2017
;
19
(
4
):
271
-
281
.
20.
Giladi
A
,
Paul
F
,
Herzog
Y
, et al
.
Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis
.
Nat Cell Biol
.
2018
;
20
(
7
):
836
-
846
.
21.
Eaves
C
,
Cashman
J
,
Eaves
A
.
Defective regulation of leukemic hematopoiesis in chronic myeloid leukemia
.
Leuk Res
.
1998
;
22
(
12
):
1085
-
1096
.
22.
Oetjen
KA
,
Lindblad
KE
,
Goswami
M
, et al
.
Human bone marrow assessment by single-cell RNA sequencing, mass cytometry, and flow cytometry
.
JCI Insight
.
2018
;
3
(
23
):
e124928
.
23.
Thomson
DW
,
Shahrin
NH
,
Wang
PPS
, et al
.
Aberrant RAG-mediated recombination contributes to multiple structural rearrangements in lymphoid blast crisis of chronic myeloid leukemia
.
Leukemia
.
2020
;
34
(
8
):
2051
-
2063
.
24.
Modi
H
,
McDonald
T
,
Chu
S
,
Yee
JK
,
Forman
SJ
,
Bhatia
R
.
Role of BCR/ABL gene-expression levels in determining the phenotype and imatinib sensitivity of transformed human hematopoietic cells
.
Blood
.
2007
;
109
(
12
):
5411
-
5421
.
25.
Jose-Eneriz
ES
,
Roman-Gomez
J
,
Cordeu
L
, et al
.
BCR-ABL1-induced expression of HSPA8 promotes cell survival in chronic myeloid leukaemia
.
Br J Haematol
.
2008
;
142
(
4
):
571
-
582
.
26.
Li
J
,
Ge
Z
.
High HSPA8 expression predicts adverse outcomes of acute myeloid leukemia
.
BMC Cancer
.
2021
;
21
(
1
):
475
.
27.
Kamal
AM
,
El-Hefny
NH
,
Hegab
HM
,
El-Mesallamy
HO
.
Expression of thioredoxin-1 (TXN) and its relation with oxidative DNA damage and treatment outcome in adult AML and ALL: a comparative study
.
Hematology
.
2016
;
21
(
10
):
567
-
575
.
28.
Kim
TM
,
Ha
SA
,
Kim
HK
, et al
.
Gene expression signatures associated with the in vitro resistance to two tyrosine kinase inhibitors, nilotinib and imatinib
.
Blood Cancer J
.
2011
;
1
(
8
):
e32
.
29.
Zipeto
MA
,
Court
AC
,
Sadarangani
A
, et al
.
ADAR1 activation drives leukemia stem cell self-renewal by impairing let-7 biogenesis
.
Cell Stem Cell
.
2016
;
19
(
2
):
177
-
191
.
30.
Ilander
M
,
Olsson-Stromberg
U
,
Schlums
H
, et al
.
Increased proportion of mature NK cells is associated with successful imatinib discontinuation in chronic myeloid leukemia
.
Leukemia
.
2017
;
31
(
5
):
1108
-
1116
.
31.
Mizoguchi
I
,
Yoshimoto
T
,
Katagiri
S
, et al
.
Sustained upregulation of effector natural killer cells in chronic myeloid leukemia after discontinuation of imatinib
.
Cancer Sci
.
2013
;
104
(
9
):
1146
-
1153
.
32.
Rea
D
,
Henry
G
,
Khaznadar
Z
, et al
.
Natural killer-cell counts are associated with molecular relapse-free survival after imatinib discontinuation in chronic myeloid leukemia: the IMMUNOSTIM study
.
Haematologica
.
2017
;
102
(
8
):
1368
-
1377
.
33.
Schutz
C
,
Inselmann
S
,
Saussele
S
, et al
.
Expression of the CTLA-4 ligand CD86 on plasmacytoid dendritic cells (pDC) predicts risk of disease recurrence after treatment discontinuation in CML
.
Leukemia
.
2017
;
31
(
4
):
829
-
836
.
34.
Dann
E
,
Henderson
NC
,
Teichmann
SA
,
Morgan
MD
,
Marioni
JC
.
Differential abundance testing on single-cell data using k-nearest neighbor graphs
.
Nat Biotechnol
.
2022
;
40
(
2
):
245
-
253
.
35.
Chang
MC
,
Cheng
HI
,
Hsu
K
, et al
.
NKG2A down-regulation by dasatinib enhances natural killer cytotoxicity and accelerates effective treatment responses in patients with chronic myeloid leukemia
.
Front Immunol
.
2018
;
9
:
3152
.
36.
Giustacchini
A
,
Thongjuea
S
,
Barkas
N
, et al
.
Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia
.
Nat Med
.
2017
;
23
(
6
):
692
-
702
.
37.
Mead
AJ
,
Mullally
A
.
Myeloproliferative neoplasm stem cells
.
Blood
.
2017
;
129
(
12
):
1607
-
1616
.
38.
Haas
S
,
Trumpp
A
,
Milsom
MD
.
Causes and consequences of hematopoietic stem cell heterogeneity
.
Cell Stem Cell
.
2018
;
22
(
5
):
627
-
638
.
39.
Watcham
S
,
Kucinski
I
,
Gottgens
B
.
New insights into hematopoietic differentiation landscapes from single-cell RNA sequencing
.
Blood
.
2019
;
133
(
13
):
1415
-
1426
.
40.
Zeng
AGX
,
Bansal
S
,
Jin
L
, et al
.
A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia
.
Nat Med
.
2022
;
28
(
6
):
1212
-
1223
.
41.
Nandakumar
SK
,
Ulirsch
JC
,
Sankaran
VG
.
Advances in understanding erythropoiesis: evolving perspectives
.
Br J Haematol
.
2016
;
173
(
2
):
206
-
218
.
42.
Park
SM
,
Cho
H
,
Thornton
AM
, et al
.
IKZF2 drives leukemia stem cell self-renewal and inhibits myeloid differentiation
.
Cell Stem Cell
.
2019
;
24
(
1
):
153
-
165.e7
.
43.
Crinier
A
,
Dumas
PY
,
Escaliere
B
, et al
.
Single-cell profiling reveals the trajectories of natural killer cell differentiation in bone marrow and a stress signature induced by acute myeloid leukemia
.
Cell Mol Immunol
.
2021
;
18
(
5
):
1290
-
1304
.
44.
Yang
C
,
Siebert
JR
,
Burns
R
, et al
.
Heterogeneity of human bone marrow and blood natural killer cells defined by single-cell transcriptome
.
Nat Commun
.
2019
;
10
(
1
):
3931
.
45.
Kamiya
T
,
Seow
SV
,
Wong
D
,
Robinson
M
,
Campana
D
.
Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells
.
J Clin Invest
.
2019
;
129
(
5
):
2094
-
2106
.
46.
Borst
L
,
van der Burg
SH
,
van Hall
T
.
The NKG2A-HLA-E axis as a novel checkpoint in the tumor microenvironment
.
Clin Cancer Res
.
2020
;
26
(
21
):
5549
-
5556
.
47.
Myers
JA
,
Miller
JS
.
Exploring the NK cell platform for cancer immunotherapy
.
Nat Rev Clin Oncol
.
2021
;
18
(
2
):
85
-
100
.
48.
Cerwenka
A
,
Lanier
LL
.
Natural killer cell memory in infection, inflammation and cancer
.
Nat Rev Immunol
.
2016
;
16
(
2
):
112
-
123
.
49.
Sun
JC
,
Beilke
JN
,
Lanier
LL
.
Adaptive immune features of natural killer cells
.
Nature
.
2009
;
457
(
7229
):
557
-
561
.
50.
Branford
S
,
Kim
DDH
,
Apperley
JF
, et al
.
Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia
.
Leukemia
.
2019
;
33
(
8
):
1835
-
1850
.
51.
Kim
T
,
Tyndel
MS
,
Kim
HJ
, et al
.
Spectrum of somatic mutation dynamics in chronic myeloid leukemia following tyrosine kinase inhibitor therapy
.
Blood
.
2017
;
129
(
1
):
38
-
47
.
52.
Takahashi
N
,
Miura
I
,
Saitoh
K
,
Miura
AB
.
Lineage involvement of stem cells bearing the Philadelphia chromosome in chronic myeloid leukemia in the chronic phase as shown by a combination of fluorescence-activated cell sorting and fluorescence in situ hybridization
.
Blood
.
1998
;
92
(
12
):
4758
-
4763
.
53.
Pagani
IS
,
Dang
P
,
Saunders
VA
, et al
.
Lineage of measurable residual disease in patients with chronic myeloid leukemia in treatment-free remission
.
Leukemia
.
2020
;
34
(
4
):
1052
-
1061
.
54.
Thielen
N
,
Richter
J
,
Baldauf
M
, et al
.
Leukemic stem cell quantification in newly diagnosed patients with chronic myeloid leukemia predicts response to nilotinib therapy
.
Clin Cancer Res
.
2016
;
22
(
16
):
4030
-
4038
.
55.
Houshmand
M
,
Simonetti
G
,
Circosta
P
, et al
.
Chronic myeloid leukemia stem cells
.
Leukemia
.
2019
;
33
(
7
):
1543
-
1556
.
56.
Warfvinge
R
,
Geironson
L
,
Sommarin
MNE
, et al
.
Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML
.
Blood
.
2017
;
129
(
17
):
2384
-
2394
.
57.
Mori
Y
,
Chen
JY
,
Pluvinage
JV
,
Seita
J
,
Weissman
IL
.
Prospective isolation of human erythroid lineage-committed progenitors
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
31
):
9638
-
9643
.
58.
Lopez-Verges
S
,
Milush
JM
,
Schwartz
BS
, et al
.
Expansion of a unique CD57(+)NKG2Chi natural killer cell subset during acute human cytomegalovirus infection
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
36
):
14725
-
14732
.
59.
Kvasnicka
HM
,
Thiele
J
,
Schmitt-Graeff
A
, et al
.
Bone marrow features improve prognostic efficiency in multivariate risk classification of chronic-phase Ph(1+) chronic myelogenous leukemia: a multicenter trial
.
J Clin Oncol
.
2001
;
19
(
12
):
2994
-
3009
.
60.
Jiang
X
,
Forrest
D
,
Nicolini
F
, et al
.
Properties of CD34+ CML stem/progenitor cells that correlate with different clinical responses to imatinib mesylate
.
Blood
.
2010
;
116
(
12
):
2112
-
2121
.
61.
Freud
AG
,
Mundy-Bosse
BL
,
Yu
J
,
Caligiuri
MA
.
The broad spectrum of human natural killer cell diversity
.
Immunity
.
2017
;
47
(
5
):
820
-
833
.
62.
Cichocki
F
,
Taras
E
,
Chiuppesi
F
, et al
.
Adaptive NK cell reconstitution is associated with better clinical outcomes
.
JCI Insight
.
2019
;
4
(
2
):
e125553
.
63.
Miller
JS
,
Lanier
LL
.
Natural killer cells in cancer immunotherapy
.
Annu Rev Cell Biol
.
2018
;
3
(
1
):
77
-
103
.
64.
Shimasaki
N
,
Jain
A
,
Campana
D
.
NK cells for cancer immunotherapy
.
Nat Rev Drug Discov
.
2020
;
19
(
3
):
200
-
218
.
65.
Bidikian
A
,
Kantarjian
H
,
Jabbour
E
, et al
.
Prognostic impact of ASXL1 mutations in chronic phase chronic myeloid leukemia
.
Blood Cancer J
.
2022
;
12
(
10
):
144
.
You do not currently have access to this content.
Sign in via your Institution