Primary cutaneous T-cell lymphomas (CTCLs) constitute a heterogeneous group of non-Hodgkin T-cell lymphomas that present in the skin. In recent years, significant progress has been made in the understanding of the pathogenesis of CTCLs. Progress in CTCL classifications combined with technical advances, in particular next-generation sequencing, enabled a more detailed analysis of the genetic and epigenetic landscape and transcriptional changes in clearly defined diagnostic entities. These studies not only demonstrated extensive heterogeneity between different CTCL subtypes but also identified recurrent alterations that are highly characteristic for diagnostic subgroups of CTCLs. The identified alterations, in particular, involve epigenetic remodeling, cell cycle regulation, and the constitutive activation of targetable oncogenic pathways. In this respect, aberrant JAK-STAT signaling is a recurrent theme; however, it is not universal for all CTCLs and has seemingly different underlaying causes in different entities. A number of the mutated genes identified are potentially actionable targets for the development of novel therapeutic strategies. Moreover, these studies have produced an enormous amount of information that will be critically important for the further development of improved diagnostic and prognostic biomarkers that can assist in the clinical management of patients with CTCL. In the present review, the main findings of these studies in relation to their functional impact on the malignant transformation process are discussed for different subtypes of CTCLs.

Primary cutaneous T-cell lymphomas (CTCLs) constitute a heterogeneous group of non-Hodgkin T-cell lymphomas that present in the skin. Clinicopathologic studies combined with long-term follow-up were critically important in defining different types of CTCLs with highly characteristic clinical and histologic features. These studies also demonstrated that CTCL differ in clinical behavior and prognosis compared with morphologically similar nodal lymphomas that may involve the skin secondarily.

As a result of these studies, primary CTCLs were included as distinct entities in current lymphoma classifications. The first classification dedicated to cutaneous lymphomas was the World Health Organization–European Organization for Research and Treatment of Cancer (WHO-EORTC) consensus classification published in 2005 that was subsequently incorporated in the 2008 WHO classification and its 2018 revision.1 These advances in lymphoma classification allow clinicians to correctly diagnose and select appropriate treatment in CTCL (see Table 1 for updated classification of CTCLs).

Table 1.

Relative frequency and prognosis of primary cutaneous T-cell lymphomas included in the 2018 update of the WHO-EORTC classification

WHO-EORTC Classification 2018Frequency, %5-y DSS, %
CTCL   
 MF 39 88 
 MF variants   
  Folliculotropic MF 75 
  Pagetoid reticulosis <1 100 
  Granulomatous slack skin <1 100 
 Sz 36 
 Adult T-cell leukemia/lymphoma <1 NDA 
 Primary cutaneous CD30+ LPDs   
  C-ALCL 95 
  LyP 12 99 
 Subcutaneous panniculitis-like T-cell lymphoma 87 
 Extranodal NK/T-cell lymphoma, nasal type <1 16 
 Chronic active Epstein-Barr virus infection <1 NDA 
 Primary cutaneous peripheral T-cell lymphoma, rare subtypes   
  Primary cutaneous γ/δ T-cell lymphoma <1 11 
  CD8+ AECyTCL (provisional) <1 31 
  Primary cutaneous CD4+ small/medium T-cell lymphoproliferative disorder (provisional) 100 
  Primary cutaneous acral CD8+ T-cell lymphoma (provisional) <1 100 
 Primary cutaneous peripheral T-cell lymphoma, NOS 15 
WHO-EORTC Classification 2018Frequency, %5-y DSS, %
CTCL   
 MF 39 88 
 MF variants   
  Folliculotropic MF 75 
  Pagetoid reticulosis <1 100 
  Granulomatous slack skin <1 100 
 Sz 36 
 Adult T-cell leukemia/lymphoma <1 NDA 
 Primary cutaneous CD30+ LPDs   
  C-ALCL 95 
  LyP 12 99 
 Subcutaneous panniculitis-like T-cell lymphoma 87 
 Extranodal NK/T-cell lymphoma, nasal type <1 16 
 Chronic active Epstein-Barr virus infection <1 NDA 
 Primary cutaneous peripheral T-cell lymphoma, rare subtypes   
  Primary cutaneous γ/δ T-cell lymphoma <1 11 
  CD8+ AECyTCL (provisional) <1 31 
  Primary cutaneous CD4+ small/medium T-cell lymphoproliferative disorder (provisional) 100 
  Primary cutaneous acral CD8+ T-cell lymphoma (provisional) <1 100 
 Primary cutaneous peripheral T-cell lymphoma, NOS 15 

Modified from reference 1.

MF, mycosis fungoides; Sz, Sézary syndrome; CD30+ LPDs, CD30+ lymphoproliferative diseases, C-ALCL, cutaneous anaplastic large cell lymphoma; LyP, Lymphomatoid papulosis; CD8+ AECyTCL, primary cutaneous aggressive epidermotropic CD8+ cytotoxic T-cell lymphoma; DSS, disease-specific survival; NDA, no data available; NOS, not otherwise specified.

However, until recently, the molecular alterations underlying initiation and progression of different CTCL subtypes remained largely unknown. Early cytogenetic studies demonstrated widespread genomic instability and complex karyotypes, but recurrent translocations or other recurrent genetic alterations were not found. The heterogeneity in the results of these studies combined with the lack of appropriate mouse models and limited number of informative cell lines have hampered progress in this field.

Recent technical advances including array-based comparative genome hybridization (aCGH) and, in particular, next-generation sequencing (NGS) enabled a more detailed analysis of genetic, epigenetic, and transcriptional changes in CTCL tumor cells. These studies confirmed the extensive heterogeneity between and within CTCL subtypes but also identified recurrent molecular alterations affecting oncogenic pathways in different types of CTCLs. In the present review, the main findings of these studies for different subtypes of CTCL are presented.

Early studies on genetic alterations in Sézary syndrome (Sz; mainly using arrays and cytogenetics) already identified extensive genetic instability with complex karyotypes.2-4 A series of genomic studies using aCGH or single nucleotide polymorphism arrays identified broad chromosomal regions affected by recurrent copy number alterations (CNAs). Significant CNA gains were detected in regions with known and bona fide oncogenes, like MYC,2,TOX,5 and losses in regions harboring tumor suppressor genes like TP53,2,6PTEN, RB1, and ZEB1,5,7,8CDKN2A-CDKN2B,9,E2A,10,DNMT3A, USP28, CAAP, NCOR1,11 and TNFAIP3.12 In addition to the genes above, deletions of RPA1, HIC1, and DUSP5 and gain of STAT3/STAT5 and IL-2 (receptor) genes were reported.2 Caprini et al13 noted that more than 3 of these recurrent chromosomal alterations (gain or loss) are significantly correlated with Sz prognosis.

This characteristic pattern of gains and losses was confirmed, with a higher resolution, by massive parallel sequencing (NGS) of large cohorts of patients with Sz. Choi et al14 not only identified identical regions as being recurrently deleted and gained in Sz but, strikingly, also with a similar prevalence as described earlier.2,13 This hallmark CNA signature, also in agreement with results from Wang et al,15 is depicted in Figure 1 and, on the one hand, underscores the heterogeneity of the genetic alterations in this disease, but on the other hand, illustrates the similarity (in terms of tumor genetics) of seemingly heterogenous patients in cohorts analyzed in different centers using different platforms. Based on the NGS data, an 11-probe fluorescence in situ hybridization panel was developed that largely confirmed the findings for Sz and thus may offer the capacity to facilitate diagnosis.16 Cyrenne et al17 linked the common gene alterations in Sz (STAT3/5B amplifications, P53 deletions) to inhibition of apoptosis by increased BCL2 activity and showed clinical efficacy of the BCL2 inhibitor venetoclax in the treatment of advanced CTCL with blood involvement.

Figure 1.

Schematic representation of CNAs in DNA of tumor cells of patients with Sz determined for independent cohorts using different platforms. Gains/amplifications are in red (on top of the x-axis) and losses/deletions in blue (below the x-axis). (A) Twenty patients using aCGH (Vermeer et al2). (B) Twenty-eight patients using single nucleotide polymorphism arrays (Caprini et al13). (C) Forty patients using NGS (Choi et al14). (D) Thirty-seven patients using NGS (Wang et al15). Location of genes recurrently affected by CNA in Sz are indicated. Irrespective of the technique/laboratory/protocol used, not only comparable aberrant chromosomal areas are identified but also with a similar frequency.

Figure 1.

Schematic representation of CNAs in DNA of tumor cells of patients with Sz determined for independent cohorts using different platforms. Gains/amplifications are in red (on top of the x-axis) and losses/deletions in blue (below the x-axis). (A) Twenty patients using aCGH (Vermeer et al2). (B) Twenty-eight patients using single nucleotide polymorphism arrays (Caprini et al13). (C) Forty patients using NGS (Choi et al14). (D) Thirty-seven patients using NGS (Wang et al15). Location of genes recurrently affected by CNA in Sz are indicated. Irrespective of the technique/laboratory/protocol used, not only comparable aberrant chromosomal areas are identified but also with a similar frequency.

Close modal

To date, the only recurrent DNA rearrangement giving rise to a recurring fusion transcript in Sz is a CTLA4/CD28 transcript identified in 3 patients by independent groups.15,18,19 CD28 is expressed in normal T cells and involved in a cascade of activation signals including cell proliferation but also transcription of CTLA4. CTLA4, in turns, counteracts the effects of CD2820 and inhibits proliferation. In the fusion gene, the activating tail of CD28 replaces the inhibitory cytoplasmic tail of CTLA4. Therefore, this fusion could be considered a novel aberrant stimulatory mechanism enhancing oncogenic proliferation and survival.20 

Many more in-frame fusion transcripts are detected by RNA-seq analysis (Table 2). Wang et al15 identified 41 in 37 patients (29 of them were successfully validated), whereas Prasad et al21 identified 86 potential fusion transcripts (7 validated) in 10 Sezary samples. Iżykowska et al11 identified 9 new fusion events in frame in 9 Sz patients; 5 fusion transcripts were described as ectopically expression of fragments of genes not expressed in normal T lymphocytes. These observations collectively underscore the genetic instability of Sz genome but have no clinal value (yet).

Table 2.

Fusion transcripts in Sézary syndrome

SampleFusion transcriptBreakpoints (DNA)Breakpoint typeEvent classWGS confirmed
Izykowska et al11       
 P1 EHD1-CAPN12 chr11: 64 628,862-chr19: 39 235,710 Genic-genic CTX Yes 
 P4 CEP57-NAT10 ch11:95 529,671-chr16:8 872 293 Genic-genic CTX Yes 
 P4 TMEM66-BAIAP2 chr8:29 928,614-chr17:79 602,847 Genic-genic CTX Yes 
 P6 MBD4-PTPRC chr3:129 151,514-chr1:198 647,866 Genic-genic CTX Yes 
 P6 PTPRC-CPN2 chr1: 198 644,193-chr2:39 030,368 Genic-genic CTX Yes 
 P6 MYB-MBNL1 chr6:135 518,448-chr3:152 111,859 Genic-genic CTX Yes 
 P6 TFG-GPR128 chr3: 100 334,867-chr3:100 446,145 Genic-genic iDel Yes 
 P8 ARMC6-DHX57-CNRIP chr2:68 543,463-chr2:39 049,173–39 050, 512-chr2: 69 247,504 Genic-genic-Genic ITX Yes 
 P8 MAP4K3-FIGLA chr2:71 014,668-chr2:39 563,447 Genic-genic ITX Yes 
 P8 DCP1-CCl27 chr3: 53 370,567-chr15: 44 079,110 Genic-genic CTX Yes 
Wang et al15       
 SPZ-002 CARD11-PIKR3 chr7:2968232-chr1:46512297 Genic-genic CTX Yes 
 SPZ-002 USP32-RAD51B chr17:58422842-chr14:68878141 Genic-genic CTX Yes 
 SPZ-010 CTSC-RAB38 chr11:88033698-chr11:87883123 Genic-genic ITX Yes 
 SPZ-011 ICOS-CD28 chr 2:204801595-chr2:204591356 Genic-nongenic iDel Yes 
 SPZ-012 C15orf57-CBX3 chr15:40854180-chr7:26241365 Nongenic genic CTX Yes 
 SPZ-013 PSMG4-WNK2 chr6:3259430-chr9:95991978 Genic-genic CTX Yes 
 SPZ-014 MYCBP-SLC25A33 chr1:39338690-chr1:9613684 Genic-genic ITX Yes 
 SPZ-015 MED22-SURF6 chr9:136210989-chr9:136202883 Genic-genic iDel Yes 
 SPZ-015 FAM186A-DIP2B chr12:50750031-chr12:50899023 Genic-genic iDel Yes 
 SPZ-016 RBMS1-GLI2 chr2:161223727-chr2:121727969 Genic-genic ITX Yes 
 SPZ-016 C15orf57-CBX3 chr15:40854974-chr7:26241386 Genic-genic CTX Yes 
 SPZ-017 SLC35A3-HIAT1 chr1:100480976-chr1:100515465 Genic-genic iDel Yes 
 SPZ-017 RPL11-TCEB3 chr1:24021281-chr1:24075511 Genic-genic iDel Yes 
 SPZ-020 SLC35A3-HIAT1 chr1:100480976-chr1:100515465 Genic-genic iDel Yes 
 SPZ-021 ZFP64-WBP1L chr20:50776662-chr10:104569650 Genic-genic CTX Yes 
 SPZ-022 ELMO1-TNRC18 chr7:37136224-chr7:5434226 Genic-genic ITX Yes 
 SPZ-028 GPR155-CIR1 chr2:175304628-chr2:175260365 Genic-genic iDel Yes 
 SPZ-028 CAB39-C%orf15 chr2:231682612-chr5:133292681 Genic-genic CTX Yes 
 SPZ-028 GOLGB1-IQCG chr3:121445760-chr3:197665651 Genic-genic ITX Yes 
 SPZ-029 IKZF2-GLI2 chr2:213921635-chr2:121684937 Genic-genic iDel Yes 
 SPZ-030 MORF4L1-B2M chr15:79170555-chr15:45003811 Genic-genic ITX Yes 
 SPZ-030 TTC39C-MEP1B chr18:21663045-chr18:29771785 Genic-genic ITX Yes 
 SPZ-031 CIC-EXOSC5 chr19:42790923-chr19:41903086 Genic-genic iDel Yes 
 SPZ-033 PPFIA1-NFKB2 chr11:70218351-chr10:104160534 Genic-genic CTX Yes 
 SPZ-033 KDM4C-UNC13B chr9:6990524-chr9:35228012 Genic-genic ITX Yes 
 SPZ-033 USP32-TTC18 chr17:58365884-chr10:75108279 Genic-genic CTX Yes 
 SPZ-036 DR1-HIPK1 chr1:93819628-chr1:114500688 Genic-genic ITX Yes 
 SPZ-037 IRF2BP2-IRF2BP2 chr1:234738670-chr1:234742706 Nongenic-genic iDel Yes 
 SPZ-038 RINL-SYK chr19:39359887-chr9:93636486 Genic-genic CTX Yes 
Prasad et al21       
 SS01 SPATA21-RASA2 Not reported Not reported Not reported Yes 
 SS04 FASN-SGMS1 Not reported Not reported Not reported Yes 
 SS05 PITRM1-HK1 Not reported Not reported Not reported Yes 
 SS13 COL25A1-NFKB2 Not reported Not reported Not reported Yes 
 SS13 TYK2-UPF1 Not reported Not reported Not reported Yes 
 SS15 NDUFAF6-BCR Not reported Not reported Not reported Yes 
SampleFusion transcriptBreakpoints (DNA)Breakpoint typeEvent classWGS confirmed
Izykowska et al11       
 P1 EHD1-CAPN12 chr11: 64 628,862-chr19: 39 235,710 Genic-genic CTX Yes 
 P4 CEP57-NAT10 ch11:95 529,671-chr16:8 872 293 Genic-genic CTX Yes 
 P4 TMEM66-BAIAP2 chr8:29 928,614-chr17:79 602,847 Genic-genic CTX Yes 
 P6 MBD4-PTPRC chr3:129 151,514-chr1:198 647,866 Genic-genic CTX Yes 
 P6 PTPRC-CPN2 chr1: 198 644,193-chr2:39 030,368 Genic-genic CTX Yes 
 P6 MYB-MBNL1 chr6:135 518,448-chr3:152 111,859 Genic-genic CTX Yes 
 P6 TFG-GPR128 chr3: 100 334,867-chr3:100 446,145 Genic-genic iDel Yes 
 P8 ARMC6-DHX57-CNRIP chr2:68 543,463-chr2:39 049,173–39 050, 512-chr2: 69 247,504 Genic-genic-Genic ITX Yes 
 P8 MAP4K3-FIGLA chr2:71 014,668-chr2:39 563,447 Genic-genic ITX Yes 
 P8 DCP1-CCl27 chr3: 53 370,567-chr15: 44 079,110 Genic-genic CTX Yes 
Wang et al15       
 SPZ-002 CARD11-PIKR3 chr7:2968232-chr1:46512297 Genic-genic CTX Yes 
 SPZ-002 USP32-RAD51B chr17:58422842-chr14:68878141 Genic-genic CTX Yes 
 SPZ-010 CTSC-RAB38 chr11:88033698-chr11:87883123 Genic-genic ITX Yes 
 SPZ-011 ICOS-CD28 chr 2:204801595-chr2:204591356 Genic-nongenic iDel Yes 
 SPZ-012 C15orf57-CBX3 chr15:40854180-chr7:26241365 Nongenic genic CTX Yes 
 SPZ-013 PSMG4-WNK2 chr6:3259430-chr9:95991978 Genic-genic CTX Yes 
 SPZ-014 MYCBP-SLC25A33 chr1:39338690-chr1:9613684 Genic-genic ITX Yes 
 SPZ-015 MED22-SURF6 chr9:136210989-chr9:136202883 Genic-genic iDel Yes 
 SPZ-015 FAM186A-DIP2B chr12:50750031-chr12:50899023 Genic-genic iDel Yes 
 SPZ-016 RBMS1-GLI2 chr2:161223727-chr2:121727969 Genic-genic ITX Yes 
 SPZ-016 C15orf57-CBX3 chr15:40854974-chr7:26241386 Genic-genic CTX Yes 
 SPZ-017 SLC35A3-HIAT1 chr1:100480976-chr1:100515465 Genic-genic iDel Yes 
 SPZ-017 RPL11-TCEB3 chr1:24021281-chr1:24075511 Genic-genic iDel Yes 
 SPZ-020 SLC35A3-HIAT1 chr1:100480976-chr1:100515465 Genic-genic iDel Yes 
 SPZ-021 ZFP64-WBP1L chr20:50776662-chr10:104569650 Genic-genic CTX Yes 
 SPZ-022 ELMO1-TNRC18 chr7:37136224-chr7:5434226 Genic-genic ITX Yes 
 SPZ-028 GPR155-CIR1 chr2:175304628-chr2:175260365 Genic-genic iDel Yes 
 SPZ-028 CAB39-C%orf15 chr2:231682612-chr5:133292681 Genic-genic CTX Yes 
 SPZ-028 GOLGB1-IQCG chr3:121445760-chr3:197665651 Genic-genic ITX Yes 
 SPZ-029 IKZF2-GLI2 chr2:213921635-chr2:121684937 Genic-genic iDel Yes 
 SPZ-030 MORF4L1-B2M chr15:79170555-chr15:45003811 Genic-genic ITX Yes 
 SPZ-030 TTC39C-MEP1B chr18:21663045-chr18:29771785 Genic-genic ITX Yes 
 SPZ-031 CIC-EXOSC5 chr19:42790923-chr19:41903086 Genic-genic iDel Yes 
 SPZ-033 PPFIA1-NFKB2 chr11:70218351-chr10:104160534 Genic-genic CTX Yes 
 SPZ-033 KDM4C-UNC13B chr9:6990524-chr9:35228012 Genic-genic ITX Yes 
 SPZ-033 USP32-TTC18 chr17:58365884-chr10:75108279 Genic-genic CTX Yes 
 SPZ-036 DR1-HIPK1 chr1:93819628-chr1:114500688 Genic-genic ITX Yes 
 SPZ-037 IRF2BP2-IRF2BP2 chr1:234738670-chr1:234742706 Nongenic-genic iDel Yes 
 SPZ-038 RINL-SYK chr19:39359887-chr9:93636486 Genic-genic CTX Yes 
Prasad et al21       
 SS01 SPATA21-RASA2 Not reported Not reported Not reported Yes 
 SS04 FASN-SGMS1 Not reported Not reported Not reported Yes 
 SS05 PITRM1-HK1 Not reported Not reported Not reported Yes 
 SS13 COL25A1-NFKB2 Not reported Not reported Not reported Yes 
 SS13 TYK2-UPF1 Not reported Not reported Not reported Yes 
 SS15 NDUFAF6-BCR Not reported Not reported Not reported Yes 

CTX, interchromosomal rearaangement; iDel, interstitial deletion; ITX, intrachromosomal rearrangement.

Many studies have focused on somatic mutations in Sz, initially directing on individual genes, followed by targeting genes involved in signaling pathways, and most recently by whole exome and whole genome analysis using NGS.

NGS (supported by proper bio-informatical tools) offers, in addition to the identification of single nucleotide variations and CNA determination, the possibility to resolve the mutational rate and characteristic mutational signatures (so-called genomic scars).22 Several groups used these approaches and found that the somatic mutation rate in Sz is on average approximately 4 mutations/Mb,15,23 being similar to solid tumors.22 Most somatic single nucleotide substitutions observed in Sz were C>T transitions (40%-75%),14,15,23 which is much less common in other hematologic cancers.22 Closer inspection (using the data from refs. 14 and 23 and algorithms from ref. 22) shows resemblance with so-called single-base substitution signatures SBS5 (aging) and SBS7a/b (UV radiation), although whether exposure to UV light plays a causative role in the onset of the disease15,24 is still under debate.

From analyses of individual mutations (often supported by CNAs), the picture emerges that genes affected in Sz cluster mainly into 5 cellular processes: cell cycle regulation, MAP-kinase signaling, T-cell receptor (TCR)/NF-κB signaling, JAK-STAT signaling, and chromatin modification.15,24,25

Two studies reanalyzed published datasets of NGS studies on CTCLs (mainly Sz) to generate high-quality homogeneous data in combination with uniform metrics and methods to create a more representative overview of point mutation frequencies.25,26 Park et al25 identified 55 putative driver genes in a genomic study conducted in 220 CTCLs (Figure 2). In addition to previously identified genes, the authors discovered novel mutations all in agreement with the above-described themes, MAPK kinase signaling (MAP2K1 and NF1), NF-κB signaling (PRKCB and CSNK1A1), TCR signaling (PTPRN2 and RLTPR), chromatin remodeling (BCOR, KDM6A, SMARCB1, and TRRAP), and T-cell differentiation (RARA). In addition, mutations in phosphatidylinositol 3-kinase signaling (PIK3R1and VAV1) and immune surveillance (CD58 and RFXAP) were found. Point mutations either predicted or confirmed to be gain-of-function were reported in JAK1 (0.9% of cases), JAK3 (2.7%), STAT3 (0.9%), and STAT5B (3.6%).25 Chang et al26 analyzed genomic data of 139 CTCL cases in a uniform matter and discovered that mutations within P53 and NF-κB pathway genes (PLCG1, CARD11, and TNFRSF1B) were mutually exclusive in Sz.

Figure 2.

Schematic view of mutations in recurrently mutated signaling pathways in CTCLs. CTCL harbors recurrent mutations that are predicted to affect (A) T-cell activation/NF-κB signaling, (B) JAK/STAT signaling, (C) MAPK signaling, and (D) chromatin modifications. SNV, single nucleotide variation. Adapted from Park et al 2017. Used with permission from the American Society of Hematology.

Figure 2.

Schematic view of mutations in recurrently mutated signaling pathways in CTCLs. CTCL harbors recurrent mutations that are predicted to affect (A) T-cell activation/NF-κB signaling, (B) JAK/STAT signaling, (C) MAPK signaling, and (D) chromatin modifications. SNV, single nucleotide variation. Adapted from Park et al 2017. Used with permission from the American Society of Hematology.

Close modal

Given the (initially reported) success of epigenetic therapies for CTCLs, epigenetic changes in CTCLs (tumor genomes) have been studied extensively and continue to be a focus of refined drug development. The epigenetic regulation of gene expression is accomplished primarily through histone/chromatine modifications, DNA (promoter) methylation, and gene silencing via the action of microRNAs. Recent technological innovations greatly facilitated detection of alterations in the epigenome and epigenetic machinery.

Histone/chromatin modifications

Histone/chromatin modifications in Sz have been studied indirectly (by determining alterations in genes encoding enzymes that modulate nucleosome structure and chromatin activity) and directly using the assay for transposase-accessible chromatin with sequencing (ATAC-seq).

Kiel et al8 identified recurrent loss-of-function aberrations targeting members of the chromatin remodeling/histone modification and trithorax families in 40% of Sz genomes (n = 66) analyzed. Similar results (although with less prevalence) were found in other NGS studies.14,19,23,27 The actual consequences of these alterations for treatment with epigenetic medication are not clear yet. Qu et al28 demonstrated (using ATACseq) that histone deacetylase inhibitor (HDACi) treatment emphasizes the differences between normal host CD4+ cells and leukemic Sz cells. Highly expressed signature elements unique to Sz cells (or normal T cells) residing in open chromatin regions were found to be even more highly expressed after treatment with HDACi, without recovery of silenced genes in either group. Using single-cell RNA sequencing and flow cytometry, Buus et al29 demonstrated that patients with Sz display a high degree of single-cell heterogeneity within the malignant T-cell population and that distinct subpopulations of malignant T cells carry HDACi resistance.29 A combination of sequencing of the TCR-encoding genes with ATAC-seq at the single-cell level, termed transcript-indexed ATAC-seq (T-ATAC-seq), was used to start unraveling epigenomic signatures in immortalized leukemic T cells, primary human T cells from healthy volunteers, and primary leukemic T cells from patient samples including Sz.30 The technique enabled identification of leukemic and nonleukemic regulatory pathways in T cells from the same individual by comparing the information that arose from the malignant Sz clone from the background T-cell signal.

MicroRNAs

In house–developed miRNA microarrays were initially used to conduct a genome wide analysis of miRNA expression of peripheral blood–derived malignant T cells from patients with Sz.31 More than 100 differentially expressed miRNAs (compared with normal peripheral blood–derived CD4+ T cells) were identified. miR-145, miR-574-5p, miR200c, miR-199a*, miR-143, and miR-214 were among the most prominently upregulated miRs, whereas miR-342, miR-223, and miR-150 were found to be downregulated in Sz compared with normal CD4+ T cells. Of note, these findings were in line with earlier observations that microRNAs exhibit high-frequency genomic alterations in human cancers because most observed changes in miR expression levels correlated with reported genomic copy number abnormalities.32,34 miR-214 and miR-199a* upregulation in Sz was also identified using a commercial array-based miR expression detection platform.35 In this study, furthermore upregulation of miR-7 and decreased expression of miR-342, miR-223, miR-92, miR-181a, and miR-191 was confirmed in Sz. Downregulation of miR-181a and upregulation of miR-214 and miR-199a* and miR-486 in Sz cells was confirmed by an NGS-based approach.36 This latter study also showed (using a quantitative polymerase chain reaction [Q-PCR]–based analysis of miR precursors) that the miR-199a2/214 cluster within the DNM3os transcript embodies most of the aberrantly expressed microRNAs in Sz.36 Given the recurrent upregulation of miR-214 in CTCLs, a transgenic mouse model (spontaneously overexpressing miR-214 in malignant T cells) was used to study its functional role. AntagomiR-214 treatment led to significant decrease in disease severity. It was also shown that aberrantly expressed TWIST1 and BET protein BRD4 cooperate to drive miR-214 expression in CTCL cell lines and in samples from patients.37 

DNA methylation

The most elaborate study on the DNA methylome in Sz was carried out by van Doorn et al,38 showing that Sz is characterized by widespread yet distinct DNA methylation alterations, which can be used clinically as epigenetic diagnostic markers. Several studies focused on individual genes, revealing distinctive promoter (hypo)methylation of genes encoding PLS3,39,40 SAMHD1,41 RUNX3,42 TWIST1, and GATA640 in Sz.

JAK-STAT signaling in Sz

Activation of the JAK-STAT signaling cascade starts after binding of cognate cytokines to cytokine receptors at the cell surface. This results in STAT protein dimerization followed by nuclear translocation and subsequent transcriptional activation of genes regulating (T)-cell proliferation, differentiation, and apoptosis. Aberrant JAK-STAT signaling is a hallmark of T-cell lymphoma43 and appears to be of critical importance in Sz. It was shown that Staphylococcus aureus (isolated from the skin of patients with Sz) can directly activate oncogenic STAT3 signaling in malignant cells.44 Using various coculture models, it was demonstrated that Staphylococcal enterotoxin A type has an indirect effect on malignant T cells, by activating infiltrating bystander nonmalignant T cells, which in response to this stimulus produce IL-2 and other regulatory cytokines. In combination with (epi) genetic changes in genes being part of or controlling this signaling pathway can further derail and fuel the oncogenic process resulting in activation of STAT3. In Sz, copy number gains of STAT3 and STAT5B are found in >60% of the patients (Figure 1), a change that can be oncogenic in itself.45 Although with a lower prevalence, gain-of-function mutations are described for JAK and STAT8,23 in Sz cells. Combined, these alterations are potentially targetable with JAK-STAT inhibitors, with a preference for STAT inhibitors because they have the potency to target STAT mutations and overexpression of STAT effectively. It is shown that cucurbitacins can induce Sz cell death by an increase in apoptosis and a decrease in proliferative signaling through inactivation of STAT3,46,47 and hence are attractive candidates to treat Sezary. In analogy, small molecule inhibitors of JAK signaling might find their way to the clinic. Ruxolitinib (JakaviTM), a JAK1/2 inhibitor, and AZD1480 (a JAK2 inhibitor) are effective on Sz cell lines.48 

The tumor (epi) genome of mycosis fungoides (MF) is far less studied, but, seemingly paradoxical, much better understood than Sz. Nearly all NGS studies on CTCLs focused primarily on Sz and included only a handful of MF biopsy specimens as an additional group. Exceptions are the whole genome study by McGirt et al,49 whole exome sequencing by Iyer et al,50 and combined whole transcriptome and whole genome study by Bastidas Torres et al,51 all focusing on MF only.

Early studies, using aCGH, revealed a pattern distinct from Sz52 and emphasized that Sz and MF are distinct diseases. On the level of individual genes, differences are found; for example, the most recurrent finding in MF is inactivation/deletion of the CDKN2A-B locus encoding the tumor suppressor protein P16,51,53-55 a finding hardly ever encountered in Sz. In Sz, the classical tumor suppressor TP53 is recurrently deleted; this loss of the chromosomal region encoding TP53 is less prevalent in MF. Using fluorescence in situ hybridization analysis, Garaico et al56 demonstrated CDKN2A disbalances are a particular frequent finding in folliculotropic MF and transformed MF vs tumor stage MF.

McGirt et al49 were the first to resolve genomic alterations in MF by NGS. In this small cohort study, only recurrent focal loss of a region containing ZEB1 (2 of 5 patients) was identified. An integrated NGS analysis (DNA/RNA) of genomic rearrangements in MF at base‐level resolution revealed a complex and heterogeneous landscape of inter‐ and intrachromosomal rearrangements.51 This study showed, similar to what was seen in Sz,11,14 a large variety of novel gene rearrangements resulting in recurrent deletion of tumor suppressors involved in pathways that are commonly deregulated in patients with MF (eg, ARID1A, CDKN2A/B, PTPRC, SOCS1, and STK11). This analysis also identified 24 fusion transcripts, including 6 containing bona fide cancer genes, which although not recurrent, could contribute to MF development in individual cases (Table 3).

Table 3.

Fusion transcripts in MF51 

SampleFusion transcriptBreakpoints (DNA)Breakpoint typeEvent classWGS confirmed
MF1 KDM6A–IL1RAPL1 chrX:44746566–chrX:29451290 Genic–genic ITX Yes 
MF1 CHIC1–RP2 chrX:72844450–chrX:46680435 Genic–nongenic ITX Yes 
MF3 ANKRD13A–CUL9 chr12:110448655–chr6:43160142 Genic–genic CTX Yes 
MF3 CLEC16A–SCARB1 chr16:11067010–chr12:125350896 Genic–nongenic CTX Yes 
MF3 SSH2–GRAP2 chr17:28059210–chr22:40314573 Genic–genic CTX Yes 
MF3 LMF1–TAF15 chr16:986148–chr17:34145925 Genic–genic CTX Yes 
MF3 ATXN1–TP63 chr6:16307814–chr3:189470345 Genic–genic CTX Yes 
MF4 CCR7–DOT1L chr17:38718403–chr19:2181252 Genic–genic CTX Yes 
MF5 PHACTR4–EPB41 chr1:28755797–chr1:29246304 Genic–genic iDel Yes 
MF5 ADAM12–MMRN2 chr10:127935628–chr10:88698606 Genic–genic iDel Yes 
MF5 TRAPPC10–TRPM2 chr21:45487448–chr21:45795335 Genic–genic iDel Yes 
MF5 ARHGAP26–TENM2 chr5:142272242–chr5:167448836 Genic–genic ITX Yes 
MF6 ANK3–RNLS chr10:62168031–chr10:90101461 Genic–genic ITX Yes 
MF6 ELF1–SATB2 chr13:41540637–chr2:200369768 Genic–nongenic CTX Yes 
MF7 TP53–GPR3 chr17:7579754–chr1:27718138 Genic–nongenic CTX Yes 
MF7 CLPP–NR3C1 chr19:6365544–chr5:142800539 Genic–genic CTX Yes 
MF7 SARNP–WRAP53 chr12:56161974–chr17:7593927 Genic–genic CTX Yes 
MF8 SETD5–RNF19A chr3:9497374–chr8:101391443 Genic–nongenic CTX Yes 
MF8 SUDS3–TMEM132B chr12:118847216–chr12:125987360 Genic–genic ITX Yes 
MF8 AACS–STAB2 chr12:125625503–chr12:104094623 Genic–genic ITX Yes 
MF8 RPUSD3–RNF19A chr3:9882804–chr8:101303862 Genic–genic CTX Yes 
MF8 YTHDF3–LIFR chr8:64081882–chr5:38586949 Genic–genic CTX Yes 
MF9 DPM1–UBE2V1 chr20:49574368–chr20:48703893 Genic–genic iDel Yes 
MF9 KCNAB2–ESPN chr1:6071941–chr1:6493075 Genic–genic iDel Yes 
SampleFusion transcriptBreakpoints (DNA)Breakpoint typeEvent classWGS confirmed
MF1 KDM6A–IL1RAPL1 chrX:44746566–chrX:29451290 Genic–genic ITX Yes 
MF1 CHIC1–RP2 chrX:72844450–chrX:46680435 Genic–nongenic ITX Yes 
MF3 ANKRD13A–CUL9 chr12:110448655–chr6:43160142 Genic–genic CTX Yes 
MF3 CLEC16A–SCARB1 chr16:11067010–chr12:125350896 Genic–nongenic CTX Yes 
MF3 SSH2–GRAP2 chr17:28059210–chr22:40314573 Genic–genic CTX Yes 
MF3 LMF1–TAF15 chr16:986148–chr17:34145925 Genic–genic CTX Yes 
MF3 ATXN1–TP63 chr6:16307814–chr3:189470345 Genic–genic CTX Yes 
MF4 CCR7–DOT1L chr17:38718403–chr19:2181252 Genic–genic CTX Yes 
MF5 PHACTR4–EPB41 chr1:28755797–chr1:29246304 Genic–genic iDel Yes 
MF5 ADAM12–MMRN2 chr10:127935628–chr10:88698606 Genic–genic iDel Yes 
MF5 TRAPPC10–TRPM2 chr21:45487448–chr21:45795335 Genic–genic iDel Yes 
MF5 ARHGAP26–TENM2 chr5:142272242–chr5:167448836 Genic–genic ITX Yes 
MF6 ANK3–RNLS chr10:62168031–chr10:90101461 Genic–genic ITX Yes 
MF6 ELF1–SATB2 chr13:41540637–chr2:200369768 Genic–nongenic CTX Yes 
MF7 TP53–GPR3 chr17:7579754–chr1:27718138 Genic–nongenic CTX Yes 
MF7 CLPP–NR3C1 chr19:6365544–chr5:142800539 Genic–genic CTX Yes 
MF7 SARNP–WRAP53 chr12:56161974–chr17:7593927 Genic–genic CTX Yes 
MF8 SETD5–RNF19A chr3:9497374–chr8:101391443 Genic–nongenic CTX Yes 
MF8 SUDS3–TMEM132B chr12:118847216–chr12:125987360 Genic–genic ITX Yes 
MF8 AACS–STAB2 chr12:125625503–chr12:104094623 Genic–genic ITX Yes 
MF8 RPUSD3–RNF19A chr3:9882804–chr8:101303862 Genic–genic CTX Yes 
MF8 YTHDF3–LIFR chr8:64081882–chr5:38586949 Genic–genic CTX Yes 
MF9 DPM1–UBE2V1 chr20:49574368–chr20:48703893 Genic–genic iDel Yes 
MF9 KCNAB2–ESPN chr1:6071941–chr1:6493075 Genic–genic iDel Yes 

Known cancer genes (NCG 5.0) are in bold.

CTX, interchromosomal rearrangement; iDel, interstitial deletion; ITX, intrachromosomal rearrangement.

Mutations in phospholipase C γ1 (PLCG1) were studied intensively since initial reports described a prevalence of 20% of a targetable mutation in this gene in CTCLs.57 However, data by Caumont et al58 suggest that PLCG1 mutations are far less prevalent: only 3% to 5% of the CTCL tumor genomes (MF and Sz) harbor PLCG1 mutations.

McGirt et al49 identified an activating mutation of JAK3 in 1 patient with MF. The combined analysis of 18 MF tumor samples being part of large CTCL sequencing studies did not reveal recurrent mutations.26 The only reported recurrent mutations in MF came from Bastidas Torres et al,51 who showed recurrent pathogenic mutations in JAK3 and FGFR4 (Tables 4 and 5).

Table 4.

Mutations identified in Sz and MF

GeneCombined data from Park et al25 (total mutations in Sz; n = 186)Combined data from Park et al25 (total mutations in MF; n = 25)Data from Bastidas Torres et al51 (deleterious mutations in Mf; n = 9)
TP53 31 
PLCG1 18 
CARD11 12 
ARID1A 12 
TRRAP 11 
POT1 10 
DNMT3A 10 
TET2 
RHOA 
CD28 
ZEB1 
RLTPR 
CREBBP 
NCOR1 
STAT5B 
KMT2D 
BCOR 
CCR4 
FAS 
KMT2C 
RARA 
TNFRSF1B 
PRKG1 
PTPRN2 
NFKB2 
ATM 
SMARCB1 
CTCF 
JAK3 
VAV1 
NF1 
ZNF365 
IRF4 
PDCD1 
PRKCQ 
KDM6A 
ARHGEF3 
RFXAP 
CSNK1A1 
TNFAIP3 
PIK3R1 
SETDB2 
JAK1 
STAT3 
CD58 
PRKCB 
BRAF 
KRAS 
NRAS 
LATS1 
U2AF1 
MAPK1 
MAP2K1 
GeneCombined data from Park et al25 (total mutations in Sz; n = 186)Combined data from Park et al25 (total mutations in MF; n = 25)Data from Bastidas Torres et al51 (deleterious mutations in Mf; n = 9)
TP53 31 
PLCG1 18 
CARD11 12 
ARID1A 12 
TRRAP 11 
POT1 10 
DNMT3A 10 
TET2 
RHOA 
CD28 
ZEB1 
RLTPR 
CREBBP 
NCOR1 
STAT5B 
KMT2D 
BCOR 
CCR4 
FAS 
KMT2C 
RARA 
TNFRSF1B 
PRKG1 
PTPRN2 
NFKB2 
ATM 
SMARCB1 
CTCF 
JAK3 
VAV1 
NF1 
ZNF365 
IRF4 
PDCD1 
PRKCQ 
KDM6A 
ARHGEF3 
RFXAP 
CSNK1A1 
TNFAIP3 
PIK3R1 
SETDB2 
JAK1 
STAT3 
CD58 
PRKCB 
BRAF 
KRAS 
NRAS 
LATS1 
U2AF1 
MAPK1 
MAP2K1 
Table 5.

Minimal common regions (<3 Mb) identified in MF and Sz

Cytogenetic bandCopy number alterationStartEndSizeCancer gene (NCG 5.0)Affected MF patients (%)51 Affected Sz patients (%)14 StartEndSize
9p21.3 Loss 21955000 21972000 17 kb CDKN2A 7 (78) 3 (7.5) 21958139 21998921 40 kb 
9q21.32 Loss 85800000 86650000 850 kb KIF27, HNRNPK 5 (56) n.a.    
16p13.13 Loss 11050000 11355000 305 kb SOCS1 5 (56) n.a.    
1q31.3 Loss 198450000 198625488 175 kb PTPRC 4 (44) n.a.    
13q14.3 Loss 50592381 51460719 868 kb DLEU2/Mir-15a/16-1 locus 4 (44) n.a.    
1p36.11 Loss 26535118 27718137 1.2 Mb ARID1A 3 (33) 7 (17.5) 25163521 27933295 2.8 Mb 
10q23.31 Loss 89450000 90000000 550 kb PTEN 3 (33) 2 (5) 88803044 90764142 2.9 Mb 
10q23.33-10q24.1 Loss 96500000 97250000 750 kb CYP2C9 3 (33) n.a.    
9q21.31 Loss 81840000 82200000 360 kb TLE4 3 (33) n.a.    
20q13.13 Loss 48700000 50154295 1.4 Mb PTPN1, PARD6B 3 (33) n.a.    
19p13.3 Loss 250000 2150000 1.9 Mb C2CD4C, FSTL3, ABCA7, STK11, C19orf26, TCF3 3 (33) 3 (7.5) 232372 1597438 1.3 Mb 
5q15-5q21.1 Loss 96700000 98250000 1.5 Mb CHD1 2 (22) n.a.    
6p22.3-6p23 Loss 14200000 16750000 2.5 Mb JARID2 2 (22) 1 (5) 152243466 152552262 9 kb 
13q14.11 Loss 40300000 41550000 1.2 Mb FOXO1, MRPS31 2 (22) 1 (5) 40413041 42256311 43 kb 
16q24.3 Loss 88950000 89500000 550 kb CBFA2T3, ANKRD11 2 (22) n.a.    
5p13.3 Gain 32100000 32165000 65 kb  3 (33) n.a.    
8q24.21 Gain 128747500 128757400 9.9 kb MYC 2 (22) n.a.    
13q33.3-13q34 Gain 109350000 112250000 2.9 Mb COL4A2 2 (22) n.a.    
Cytogenetic bandCopy number alterationStartEndSizeCancer gene (NCG 5.0)Affected MF patients (%)51 Affected Sz patients (%)14 StartEndSize
9p21.3 Loss 21955000 21972000 17 kb CDKN2A 7 (78) 3 (7.5) 21958139 21998921 40 kb 
9q21.32 Loss 85800000 86650000 850 kb KIF27, HNRNPK 5 (56) n.a.    
16p13.13 Loss 11050000 11355000 305 kb SOCS1 5 (56) n.a.    
1q31.3 Loss 198450000 198625488 175 kb PTPRC 4 (44) n.a.    
13q14.3 Loss 50592381 51460719 868 kb DLEU2/Mir-15a/16-1 locus 4 (44) n.a.    
1p36.11 Loss 26535118 27718137 1.2 Mb ARID1A 3 (33) 7 (17.5) 25163521 27933295 2.8 Mb 
10q23.31 Loss 89450000 90000000 550 kb PTEN 3 (33) 2 (5) 88803044 90764142 2.9 Mb 
10q23.33-10q24.1 Loss 96500000 97250000 750 kb CYP2C9 3 (33) n.a.    
9q21.31 Loss 81840000 82200000 360 kb TLE4 3 (33) n.a.    
20q13.13 Loss 48700000 50154295 1.4 Mb PTPN1, PARD6B 3 (33) n.a.    
19p13.3 Loss 250000 2150000 1.9 Mb C2CD4C, FSTL3, ABCA7, STK11, C19orf26, TCF3 3 (33) 3 (7.5) 232372 1597438 1.3 Mb 
5q15-5q21.1 Loss 96700000 98250000 1.5 Mb CHD1 2 (22) n.a.    
6p22.3-6p23 Loss 14200000 16750000 2.5 Mb JARID2 2 (22) 1 (5) 152243466 152552262 9 kb 
13q14.11 Loss 40300000 41550000 1.2 Mb FOXO1, MRPS31 2 (22) 1 (5) 40413041 42256311 43 kb 
16q24.3 Loss 88950000 89500000 550 kb CBFA2T3, ANKRD11 2 (22) n.a.    
5p13.3 Gain 32100000 32165000 65 kb  3 (33) n.a.    
8q24.21 Gain 128747500 128757400 9.9 kb MYC 2 (22) n.a.    
13q33.3-13q34 Gain 109350000 112250000 2.9 Mb COL4A2 2 (22) n.a.    

Histone/chromatin

Histone/chromatin modifications in MF have been studied solely indirectly (by determining alterations in genes encoding enzymes that modulate nucleosome structure and chromatin activity). In most of these studies, sporadic mutations were found (eg, in DNMT3A, TET2, and ARID1A26).

DNA (hyper)methylation

Few studies focused on DNA methylation in MF. Van Doorn et al59 used a genome-wide approach and identified hypermethylation of multiple tumor suppressor genes including BCL7a and CDKN2A/B in tumor stage MF. CDKN2A/B methylation was described for early and advanced MF disease and seems to be independent of disease stage. A specific DNA methylation profile that correlated with a high risk of disease progression in early-stage MF included PPARG, SOCS1, and NEUROG1.60 Sandoval et al61 found an inverse an inverse correlation between microRNA expression and DNA methylation in MF tumor stage. Table 6 summarizes the key findings in Sz and MF.

Table 6.

Methylation of gene promoter regions in most studied CTCL entities

Gene nameSzMFCD30+LPD
HypoHyperHypoHyperHypoHyper
PLS3 x (39)      
GATA6 x (40)      
TWIST1 x (40)      
SAMHD1 x (41)      
TMEM244 x (119)      
CMTM2  x (120)     
C2orf40  x (120)     
G0S2  x (120)     
HSBP6  x (120)     
PROM1  x (120)     
PAM  x (120)     
MLH1    x (121)   
P15    x (53,55,59, 122)  x (53) 
P16    x (53,55,59, 122)  x (53) 
BCL7A    x (123)   
PTPRG    x (123)   
P73    x (123)   
FAS    x (124)   
PPARG    x (60)   
NEUROG    x (60)   
SOCS1    x (60)   
DUSP22      x (125) 
       
       
126 coding genes  x (120)     
miRNAgenes       
miR-141/200c      x (61) 
miR-193b    x (61)   
miR-10b    x (61)   
miR-21     x (61)  
miR-429   x (61)    
miR-142   x (61)  x (61)  
Gene nameSzMFCD30+LPD
HypoHyperHypoHyperHypoHyper
PLS3 x (39)      
GATA6 x (40)      
TWIST1 x (40)      
SAMHD1 x (41)      
TMEM244 x (119)      
CMTM2  x (120)     
C2orf40  x (120)     
G0S2  x (120)     
HSBP6  x (120)     
PROM1  x (120)     
PAM  x (120)     
MLH1    x (121)   
P15    x (53,55,59, 122)  x (53) 
P16    x (53,55,59, 122)  x (53) 
BCL7A    x (123)   
PTPRG    x (123)   
P73    x (123)   
FAS    x (124)   
PPARG    x (60)   
NEUROG    x (60)   
SOCS1    x (60)   
DUSP22      x (125) 
       
       
126 coding genes  x (120)     
miRNAgenes       
miR-141/200c      x (61) 
miR-193b    x (61)   
miR-10b    x (61)   
miR-21     x (61)  
miR-429   x (61)    
miR-142   x (61)  x (61)  

MicroRNAs

The first study on miRNA profiling of MF used the same in house developed platform as described for Sz and compared MF tumors skin biopsies with benign inflammatory dermatoses.62 Further validation of identified differences was achieved using Q-PCR and biopsies of an independent cohort of patients and controls. It was found that, compared with benign controls in tumor stage MF, the majority (30 of 49) of the differentially expressed miRNAs are upregulated. Several upregulated miRNAs (miR-93, miR-155, and miR-17-92) have been validated functionally as oncomirs,63-65 and aberrant expression of many of these identified dysregulated miRs was described previously in cancer. In part based on these results, a Q-PCR–based classifier consisting of miR-155, miR-203, and miR-205 was developed by Ralfkiaer et al,66 enabling the ability to distinguish CTCLs (including Sz) from benign skin disorders. Close inspection of the data of Qin et al36 showed that miR-203 and -205 are indeed lowly expressed in Sz but are absent in healthy T cells. Moreover, miR-203 and -205 were previously described as being characteristic for keratinocytes,67-69 which suggests that loss of expression of these miRs in CTCL skin biopsies simply reflects the amount of skin tissue over T cells (low in tumor skin biopsies and high in benign controls) rather than downregulation of these miRs in tumor T cells. This also shows that RNA expression results from biopsies (both mRNA and miRNA) should be interpreted with care because biopsies may fail to detect changes in expression because of the relative paucity of MF tumor cells in the collected tissue. Validation by results from genomic studies and/or tissue with a high tumor cell content can circumvent this. The oncogenic role of miR-155 in MF was confirmed by different groups,70-72 and inhibitors of miR-155 are currently tested in clinical trials.73 Recently an interesting link between miR dysregulation and chromatin modifications was postulated by Kohnken et al,74 showing an inverse relationship between expression of miR-29b and the epigenetic reader bromodomain-containing protein 4 (BRD4) in CTCL.

JAK-STAT signaling in MF

Like in Sz, aberrant JAK-STAT signaling also appears to be pivotal in MF. Starting with aberrant activation of the JAK-STAT pathway because of inflammation of the skin, a protumorigenic inflammatory environment can emerge. An impressive example of malignant inflammation most likely caused by Staphylococcus aureus infection was demonstrated by Lindahl et al.75 It is postulated that this initiates the oncogenic process resulting in activation of STAT3 as is frequently seen in advanced stages of MF.76 In contrast to Sz, however, copy number gains of STAT3/5B or gain-of-function mutations are less prevalent in MF In particular, SOCS1 emerges as a candidate culprit gene in MF explaining enhanced JAK-STAT activity in early and late stage MF.76 Loss of SOCS1, either to deletion or unbalanced translocation is observed in approximately 35% of the cases (and can already be found in early stage MF51), whereas upregulation of miR-155, a microRNA targeting SOCS1 mRNA, is documented by many studies 61,62,66,72 across different laboratories. Furthermore, an independent study showed inactivation of the SOCS1 promoter by DNA methylation in 18% of MF cases.60 The SOCS (suppressor of cytokine signaling) family of proteins are negative-feedback inhibitors of signaling induced by cytokines that act via the JAK/STAT pathway. SOCS1, the most potent member of the family, inhibits JAK signaling directly by interfering with JAK1 or JAK3 but can also act as ubiquitin ligase by recruiting Cullin5 to ubiquitinate signaling components.77 The JAK-STAT pathway and aberrancies found in MF is depicted in Figure 3.

Figure 3.

Central role of (aberrant) JAK/STAT signaling in MF. (A) Simplified scheme of JAK/STAT signaling. (B) Alterations found leading to increased transcriptional activity of gene promoters with STAT binding sites. Some features are shared with Sz (eg, malignant inflammation and JAK mutations), whereas others are typical for MF (loss of SOCS1 and upregulation of miR-155).

Figure 3.

Central role of (aberrant) JAK/STAT signaling in MF. (A) Simplified scheme of JAK/STAT signaling. (B) Alterations found leading to increased transcriptional activity of gene promoters with STAT binding sites. Some features are shared with Sz (eg, malignant inflammation and JAK mutations), whereas others are typical for MF (loss of SOCS1 and upregulation of miR-155).

Close modal

It is generally assumed that TCR genes are rearranged polyclonally in normal and reactively proliferating T cells (resulting in random rearrangements), whereas identically rearranged TCR genes are hallmarks for neoplastic T cells. Based on this principle, TCR sequencing is often used to determine clonality and hence the presence of tumor cells in skin lesions of early MF, leukemic involvement in MF/SS, and/or monitoring of residual disease. This assumption should be taken with care, and pros, cons, and pitfalls of this approach were recently reviewed by Walia and Yeung.78 Carried out in a proper way, high-throughput sequencing of the TCRb gene permits calculation of so-called tumor clone frequencies, for which De Masson et al79 showed that a tumor clone frequency > 25% at an early stage of MF has the ability to predict a poorer outcome than any other prognostic marker. With this technique, it was also demonstrated that low-dose radiotherapy can eradicate malignant T cells in MF.80 A combination of TCR sequencing with whole exome sequencing of microdissected tissue of MF lesions led to the identification of multiple T-cell clones within a single tumor cell fraction, with considerable variation between patients and between lesions from the same patient.81 

Primary cutaneous CD30-positive lymphoproliferative disorders (pcCD30+LPDs) account for ∼20% of all cutaneous T-cell lymphomas. This group forms a spectrum, with primary cutaneous anaplastic large cell lymphoma (pcALCL) on 1 end, lymphomatoid papulosis (LyP) on the other, and borderline cases in between.82-84 In contrast to systemic ALCL, (sALCL), which appears to be driven by a variety of genetic alterations that (over)activate STAT3 signaling,85-90 the molecular pathogenesis and key drivers of pcALCL (and LyP) remain largely unknown.

CNAs were studied by van Kester et al91 using aCGH showing a pattern distinct from Sz and MF. Combining these data with array-based expression profiling revealed that the lower tendency of cALCL to disseminate to extracutaneous sites may be explained by higher expression of the skin-homing chemokine receptor genes CCR10 and CCR8.

Chromosomal rearrangements involving ALK, DUSP22, TP63, and TYK2, common in sALCL, have also been detected in pcALCL, albeit at much lower frequencies.92,93 ALK gene rearrangements have been reported initially in pediatric patients, all having an excellent prognosis,94,95 and recently in adults96,97 in approximately 2% of the cALCL cases. In 50% of these cases, a NPM1-ALK fusion was observed, whereas in the remaining cases, a translocation of ALK with TRAF1, ATIC, or TPM3 was observed.97 

Rearrangements involving the DUSP22/IRF4 locus have been described in cALCL with an overall frequency of approximately 30%.98-101 This latter translocation is also found in a subgroup of LyP (5%) defining a distinct and novel subtype.102 

In a large ALCL NGS study, Creszenzo et al86 included 44 pcALCL tumor biopsy specimens. Recurrent translocations/fusion transcripts were not reported, but a fraction of the samples (5%) displayed mutations in JAK1/STAT3, suggesting that the activation of the JAK-STAT signaling pathway might play a role in cutaneous CD30-positive lymphoproliferative disorders as well.

MiRs

Thus far, only 2 studies described the miRnome of cALCL. Using a combination of arrays and miRNA-Q-PCR, Benner et al103 identified statistically significantly differential expression of miR-155, miR-27b, miR-93, miR-29b, and miR-92a between tumor stage MF and cALCL. No differences in global expression between MF and cALCL were found by Sandoval et al,61 but an inverse correlation between microRNA expression and DNA methylation for both MF tumor and the CD30+ cALCL groups was detected.61 Furthermore, the expression of methylated microRNAs was restored by demethylating agents, supporting the role of DNA methylation on the regulation of the differentially expressed microRNAs in cALCL (and MF).

DNA methylation and chromatin modifications. SATB1 (special AT-rich sequence-binding protein 1) expression seems to be upregulated in most anaplastic cells in LyP (91.8%) and in approximately one-third of ALCL cases (38.1%). SATB1 is a chromatin organizer that is necessary for the development of thymocytes. A potential mechanism was described by Sun et al,104 showing SATB1 promoter demethylation in SATB1+ cutaneous anaplastic lymphoma.

Finally, the gene encoding the CD30 antigen (TNFRSF8) has been the subject of many studies; it is, however, still unclear whether CD30 expression plays a role in the pathogenesis of pcCD30+LPD or is merely a marker of the disease. Irrespective of its function, the specific and high expression of the protein offers excellent opportunities for treatment protocols using anti-CD30 antibodies (eg, brentuximab vedotin105).

Genetic alterations in primary cutaneous CD8 aggressive epidermotropic cytotoxic T-cell lymphoma

Primary cutaneous CD8 aggressive epidermotropic cytotoxic T-cell lymphoma (pcAECyTCL) is a rare CTCL variant, characterized by an abrupt onset and a highly aggressive clinical course.82,106 Malignant T cells typically express CD3, CD7, CD8, CD45RA, TCR-βF1, T-BET, and 1 or more cytotoxic markers (eg, granzyme B, perforin, and TIA-1), which strongly suggests that neoplastic cells in this lymphoma derive from CD8+ T cells.82,107

Thus far, the pathogenetic basis of this malignancy has been large unknown. Two clinical case reports included the evaluation of CNAs in single patients using array-based methods,108,109 and recently, a study performed on tumors from 20 patients defined the CNA profile of pcAECyTCL by using array-based comparative genomic hybridization.110 Recurrent CNAs uncovered by these studies include losses within 1p, 9p, 13q, and 16p and gains within 7q, 8q, and 17q, with the loss of the region containing CDKN2A/B the most frequent CNA.110 

Early this year, the first high-resolution genomic analysis of pcAECyTCL using whole-genome sequencing and RNA sequencing was published by Bastidas Torres et al.111 From this study, it became clear that overactivation of JAK2 signaling because of oncogenic changes in JAK2 and SH2B3, 2 genes with key roles in this signaling pathway, predominantly underlie pcAECyTCL (Figure 4).

Figure 4.

AECyTCL. Genes and pathways recurrently altered in AECyTCL. JAK2 and SH2B3, genes that govern the activation and termination of JAK2 signaling in normal hematopoietic cells, respectively, are mutually exclusively affected in 9 of 12 patients. The remaining 3 patients carry pathogenic indels/single nucleotide variations in other JAK-STAT pathway genes.

Figure 4.

AECyTCL. Genes and pathways recurrently altered in AECyTCL. JAK2 and SH2B3, genes that govern the activation and termination of JAK2 signaling in normal hematopoietic cells, respectively, are mutually exclusively affected in 9 of 12 patients. The remaining 3 patients carry pathogenic indels/single nucleotide variations in other JAK-STAT pathway genes.

Close modal

Primary cutaneous γδ T-cell lymphoma (PCGDTL) originates from activated mature γδ T cells with a cytotoxic phenotype and is an extremely rare disease with an unfavorable prognosis. First knowledge on genetic alterations came from a single case report describing very complex cytogenetic alterations that include translocations involving breakpoints at 9p21, 14q11.2, 14q32.1, or 16q23.1.112 Very recently, a genome-wide DNA, RNA, and TCR sequencing study on 29 cutaneous γδ lymphomas revealed that PCGDTLs are not uniformly derived from Vδ2 cells. Instead, it was shown that the cell-of-origin depends on the tissue compartment from which the lymphomas are derived, and Vδ1 and Vδ2 lymphomas could be distinguished. The results also showed that TCR chain use is nonrandom, suggesting that Vδ1 and Vδ2 might have common antigens. Both types of PCGDTLs harbor similar genomic alterations with potentially targetable oncogenic mutations in the MAPK, MYC, JAK/STAT, and chromatin modification pathways.113 

Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a rare primary cutaneous lymphoma of mature cytotoxic T cells responding very well to immunosuppressive therapy. A breakthrough in the understanding of this disease was made by the identification of germ-line mutations in the HAVCR2 gene encoding T-cell immunoglobulin mucin 3 (TIM3).114 TIM3 is a transmembrane protein expressed by CD8+ T cells and natural killer cells and acts as a negative immune checkpoint. The homozygous p.Y82C mutation turned out to be the most prevalent (10 of 13 patients115; 12 of 16 patients114). Less frequent is the p.I97M variant (3 of 16114). Compound heterozygous mutations (p.Y82C and p.T101I) were described by Polprasert et al115 for 1 patient (of 11 analyzed). The p.Y82C mutation in TIM3 induces protein misfolding and loss of expression of this molecule on the plasma membrane, resulting in loss of its function and promoting acceleration of immunity and inflammation in SPTCL. In addition to this germline predisposition, recurrent somatic mutations were identified in genes involved in epigenetic regulation and phosphatidylinositol 3-kinase/Ak strain transforming/mammalian target of rapamycin signal pathway, suggesting association with the pathogenesis of SPTCL.115,116

Only 1 study aimed at a genome-wide analysis of primary cutaneous peripheral T-cell lymphoma, not otherwise specified.91 The overall pattern of CNA is distinct from those found for cALCL, MF, and Sz but did not show apparent similarities with peripheral T-cell lymphoma of noncutaneous origin.117 It was suggested that overexpression of the signaling protein encoded by PRKCQ might contribute to the clinical aggressiveness seen in this lymphoma entity.91 

The combination of state-of-art techniques (initially arrays, subsequently followed by NGS) and clinically well-defined material (according to the WHO-EORTC classification) accelerated the knowledge on the pathogenesis of CTCLs. These studies identified molecular alterations possibly underlying initiation and progression of different CTCL entities and improved therapy.

In a next phase, several developments can be expected. (1) More detailed genomic data also of rare CTCL entities. (2) Combination of single cell sequencing of RNA, DNA, and (surface) proteins of (isolated) tumor cells for in-depth determination of tumor heterogeneity (eg, Eccite technique and derivatives thereof).118 (3) Subdivision and/or reclassification of CTCL based on molecular features as was recently performed for B-cell lymphoma.119 (4) Functional studies aiming to delineate the precise contribution of identified genes and pathways and development of (novel) therapies. These steps will eventually lead to improved diagnosis, prognosis and (precision) treatment of this hematologic malignancy in the skin.

The authors thank E. Vreugdenhil for help with Figure 1 and A. N. Bastidas Torres for preparing Figure 4.

Contribution: C.P.T., K.D.Q., and M.H.V. designed research, performed research, analyzed data, and wrote the paper.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Maarten H. Vermeer, Rm B1-91, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; e-mail: m.h.vermeer@lumc.nl.

1.
Willemze
R
,
Cerroni
L
,
Kempf
W
, et al
.
The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas
.
Blood.
2019
;
133
(
16
):
1703
1714
.
2.
Vermeer
MH
,
van Doorn
R
,
Dijkman
R
, et al
.
Novel and highly recurrent chromosomal alterations in Sézary syndrome
.
Cancer Res.
2008
;
68
(
8
):
2689
2698
.
3.
Mao
X
,
Lillington
D
,
Scarisbrick
JJ
, et al
.
Molecular cytogenetic analysis of cutaneous T-cell lymphomas: identification of common genetic alterations in Sézary syndrome and mycosis fungoides
.
Br J Dermatol.
2002
;
147
(
3
):
464
475
.
4.
Batista
DA
,
Vonderheid
EC
,
Hawkins
A
, et al
.
Multicolor fluorescence in situ hybridization (SKY) in mycosis fungoides and Sézary syndrome: search for recurrent chromosome abnormalities
.
Genes Chromosomes Cancer.
2006
;
45
(
4
):
383
391
.
5.
Lin
WM
,
Lewis
JM
,
Filler
RB
, et al
.
Characterization of the DNA copy-number genome in the blood of cutaneous T-cell lymphoma patients
.
J Invest Dermatol.
2012
;
132
(
1
):
188
197
.
6.
Lamprecht
B
,
Kreher
S
,
Möbs
M
, et al
.
The tumour suppressor p53 is frequently nonfunctional in Sézary syndrome
.
Br J Dermatol.
2012
;
167
(
2
):
240
246
.
7.
Cristofoletti
C
,
Picchio
MC
,
Lazzeri
C
, et al
.
Comprehensive analysis of PTEN status in Sezary syndrome
.
Blood.
2013
;
122
(
20
):
3511
3520
.
8.
Kiel
MJ
,
Sahasrabuddhe
AA
,
Rolland
DCM
, et al
.
Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sézary syndrome
.
Nat Commun.
2015
;
6
(
1
):
8470
.
9.
Laharanne
E
,
Oumouhou
N
,
Bonnet
F
, et al
.
Genome-wide analysis of cutaneous T-cell lymphomas identifies three clinically relevant classes
.
J Invest Dermatol.
2010
;
130
(
6
):
1707
1718
.
10.
Steininger
A
,
Möbs
M
,
Ullmann
R
, et al
.
Genomic loss of the putative tumor suppressor gene E2A in human lymphoma
.
J Exp Med.
2011
;
208
(
8
):
1585
1593
.
11.
Iżykowska
K
,
Przybylski
GK
,
Gand
C
, et al
.
Genetic rearrangements result in altered gene expression and novel fusion transcripts in Sézary syndrome
.
Oncotarget.
2017
;
8
(
24
):
39627
39639
.
12.
Braun
FC
,
Grabarczyk
P
,
Möbs
M
, et al
.
Tumor suppressor TNFAIP3 (A20) is frequently deleted in Sézary syndrome
.
Leukemia.
2011
;
25
(
9
):
1494
1501
.
13.
Caprini
E
,
Cristofoletti
C
,
Arcelli
D
, et al
.
Identification of key regions and genes important in the pathogenesis of sezary syndrome by combining genomic and expression microarrays
.
Cancer Res.
2009
;
69
(
21
):
8438
8446
.
14.
Choi
J
,
Goh
G
,
Walradt
T
, et al
.
Genomic landscape of cutaneous T cell lymphoma
.
Nat Genet.
2015
;
47
(
9
):
1011
1019
.
15.
Wang
L
,
Ni
X
,
Covington
KR
, et al
.
Genomic profiling of Sézary syndrome identifies alterations of key T cell signaling and differentiation genes
.
Nat Genet.
2015
;
47
(
12
):
1426
1434
.
16.
Weed
J
,
Gibson
J
,
Lewis
J
, et al
.
FISH panel for leukemic CTCL
.
J Invest Dermatol.
2017
;
137
(
3
):
751
753
.
17.
Cyrenne
BM
,
Lewis
JM
,
Weed
JG
, et al
.
Synergy of BCL2 and histone deacetylase inhibition against leukemic cells from cutaneous T-cell lymphoma patients
.
Blood.
2017
;
130
(
19
):
2073
2083
.
18.
Sekulic
A
,
Liang
WS
,
Tembe
W
, et al
.
Personalized treatment of Sézary syndrome by targeting a novel CTLA4:CD28 fusion
.
Mol Genet Genomic Med.
2015
;
3
(
2
):
130
136
.
19.
Ungewickell
A
,
Bhaduri
A
,
Rios
E
, et al
.
Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2
.
Nat Genet.
2015
;
47
(
9
):
1056
1060
.
20.
Krummel
MF
,
Allison
JP.
CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation
.
J Exp Med.
1995
;
182
(
2
):
459
465
.
21.
Prasad
A
,
Rabionet
R
,
Espinet
B
, et al
.
Identification of gene mutations and fusion genes in patients with Sézary syndrome
.
J Invest Dermatol.
2016
;
136
(
7
):
1490
1499
.
22.
Alexandrov
LB
,
Kim
J
,
Haradhvala
NJ
, et al
.
PCAWG Consortium
.
The repertoire of mutational signatures in human cancer
.
Nature.
2020
;
578
(
7793
):
94
101
.
23.
da Silva Almeida
AC
,
Abate
F
,
Khiabanian
H
, et al
.
The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome
.
Nat Genet.
2015
;
47
(
12
):
1465
1470
.
24.
Bastidas Torres
AN
,
Najidh
S
,
Tensen
CP
,
Vermeer
MH.
Molecular advances in cutaneous T-cell lymphoma
.
Semin Cutan Med Surg.
2018
;
37
(
1
):
81
86
.
25.
Park
J
,
Yang
J
,
Wenzel
AT
, et al
.
Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p.Q575E)
.
Blood.
2017
;
130
(
12
):
1430
1440
.
26.
Chang
LW
,
Patrone
CC
,
Yang
W
, et al
.
An integrated data resource for genomic analysis of cutaneous T-cell lymphoma
.
J Invest Dermatol.
2018
;
138
(
12
):
2681
2683
.
27.
Woollard
WJ
,
Pullabhatla
V
,
Lorenc
A
, et al
.
Candidate driver genes involved in genome maintenance and DNA repair in Sézary syndrome
.
Blood.
2016
;
127
(
26
):
3387
3397
.
28.
Qu
K
,
Zaba
LC
,
Satpathy
AT
, et al
.
Chromatin accessibility landscape of cutaneous T cell lymphoma and dynamic response to HDAC inhibitors
.
Cancer Cell.
2017
;
32
(
1
):
27
41
.
29.
Buus
TB
,
Willerslev-Olsen
A
,
Fredholm
S
, et al
.
Single-cell heterogeneity in Sézary syndrome
.
Blood Adv.
2018
;
2
(
16
):
2115
2126
.
30.
Satpathy
AT
,
Saligrama
N
,
Buenrostro
JD
, et al
.
Transcript-indexed ATAC-seq for precision immune profiling
.
Nat Med.
2018
;
24
(
5
):
580
590
.
31.
Ballabio
E
,
Mitchell
T
,
van Kester
MS
, et al
.
MicroRNA expression in Sezary syndrome: identification, function, and diagnostic potential
.
Blood.
2010
;
116
(
7
):
1105
1113
.
32.
Vermeer
MH
,
van Doorn
R
,
Dijkman
R
, et al
.
Novel and highly recurrent chromosomal alterations in Sézary syndrome
.
Cancer Res.
2008
;
68
(
8
):
2689
2698
.
33.
Zhang
L
,
Huang
J
,
Yang
N
, et al
.
microRNAs exhibit high frequency genomic alterations in human cancer
.
Proc Natl Acad Sci USA.
2006
;
103
(
24
):
9136
9141
.
34.
Croce
CM.
Causes and consequences of microRNA dysregulation in cancer
.
Nat Rev Genet.
2009
;
10
(
10
):
704
714
.
35.
Narducci
MG
,
Arcelli
D
,
Picchio
MC
, et al
.
MicroRNA profiling reveals that miR-21, miR486 and miR-214 are upregulated and involved in cell survival in Sézary syndrome
.
Cell Death Dis.
2011
;
2
(
4
):
e151
.
36.
Qin
Y
,
Buermans
HP
,
van Kester
MS
, et al
.
Deep-sequencing analysis reveals that the miR-199a2/214 cluster within DNM3os represents the vast majority of aberrantly expressed microRNAs in Sézary syndrome
.
J Invest Dermatol.
2012
;
132
(
5
):
1520
1522
.
37.
Kohnken
R
,
McNeil
B
,
Wen
J
, et al
.
Preclinical targeting of MicroRNA-214 in cutaneous T-cell lymphoma
.
J Invest Dermatol.
2019
;
139
(
9
):
1966
1974.e3
.
38.
van Doorn
R
,
Slieker
RC
,
Boonk
SE
, et al
.
Epigenomic analysis of Sézary syndrome defines patterns of aberrant DNA methylation and identifies diagnostic markers
.
J Invest Dermatol.
2016
;
136
(
9
):
1876
1884
.
39.
Jones
CL
,
Ferreira
S
,
McKenzie
RC
, et al
.
Regulation of T-plastin expression by promoter hypomethylation in primary cutaneous T-cell lymphoma
.
J Invest Dermatol.
2012
;
132
(
8
):
2042
2049
.
40.
Wong
HK
,
Gibson
H
,
Hake
T
, et al
.
Promoter-specific hypomethylation is associated with overexpression of PLS3, GATA6, and TWIST1 in the Sezary syndrome
.
J Invest Dermatol.
2015
;
135
(
8
):
2084
2092
.
41.
de Silva
S
,
Wang
F
,
Hake
TS
,
Porcu
P
,
Wong
HK
,
Wu
L.
Downregulation of SAMHD1 expression correlates with promoter DNA methylation in Sézary syndrome patients
.
J Invest Dermatol.
2014
;
134
(
2
):
562
565
.
42.
Haider
A
,
Steininger
A
,
Ullmann
R
, et al
.
Inactivation of RUNX3/p46 promotes cutaneous T-cell lymphoma
.
J Invest Dermatol.
2016
;
136
(
11
):
2287
2296
.
43.
Waldmann
TA
,
Chen
J.
Disorders of the JAK/STAT pathway in T cell lymphoma pathogenesis: implications for immunotherapy
.
Annu Rev Immunol.
2017
;
35
(
1
):
533
550
.
44.
Willerslev-Olsen
A
,
Krejsgaard
T
,
Lindahl
LM
, et al
.
Staphylococcal enterotoxin A (SEA) stimulates STAT3 activation and IL-17 expression in cutaneous T-cell lymphoma
.
Blood.
2016
;
127
(
10
):
1287
1296
.
45.
Haddad
BR
,
Gu
L
,
Mirtti
T
, et al
.
STAT5A/B gene locus undergoes amplification during human prostate cancer progression
.
Am J Pathol.
2013
;
182
(
6
):
2264
2275
.
46.
van Kester
MS
,
Out-Luiting
JJ
,
von dem Borne
PA
,
Willemze
R
,
Tensen
CP
,
Vermeer
MH.
Cucurbitacin I inhibits Stat3 and induces apoptosis in Sézary cells
.
J Invest Dermatol.
2008
;
128
(
7
):
1691
1695
.
47.
Brouwer
IJ
,
Out-Luiting
JJ
,
Vermeer
MH
,
Tensen
CP.
Cucurbitacin E and I target the JAK/STAT pathway and induce apoptosis in Sézary cells
.
Biochem Biophys Rep.
2020
;
24
:
100832
.
48.
Pérez
C
,
González-Rincón
J
,
Onaindia
A
, et al
.
Mutated JAK kinases and deregulated STAT activity are potential therapeutic targets in cutaneous T-cell lymphoma
.
Haematologica.
2015
;
100
(
11
):
e450
e453
.
49.
McGirt
LY
,
Jia
P
,
Baerenwald
DA
, et al
.
Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides
.
Blood.
2015
;
126
(
4
):
508
519
.
50.
Iyer
A
,
Hennessey
D
,
O’Keefe
S
, et al
.
Clonotypic heterogeneity in cutaneous T-cell lymphoma (mycosis fungoides) revealed by comprehensive whole-exome sequencing
.
Blood Adv.
2019
;
3
(
7
):
1175
1184
.
51.
Bastidas Torres
AN
,
Cats
D
,
Mei
H
, et al
.
Genomic analysis reveals recurrent deletion of JAK-STAT signaling inhibitors HNRNPK and SOCS1 in mycosis fungoides
.
Genes Chromosomes Cancer.
2018
;
57
(
12
):
653
664
.
52.
van Doorn
R
,
van Kester
MS
,
Dijkman
R
, et al
.
Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome
.
Blood.
2009
;
113
(
1
):
127
136
.
53.
Nicolae-Cristea
AR
,
Benner
MF
,
Zoutman
WH
, et al
.
Diagnostic and prognostic significance of CDKN2A/CDKN2B deletions in patients with transformed mycosis fungoides and primary cutaneous CD30-positive lymphoproliferative disease
.
Br J Dermatol.
2015
;
172
(
3
):
784
788
.
54.
Navas
IC
,
Algara
P
,
Mateo
M
, et al
.
p16(INK4a) is selectively silenced in the tumoral progression of mycosis fungoides
.
Lab Invest.
2002
;
82
(
2
):
123
132
.
55.
Laharanne
E
,
Chevret
E
,
Idrissi
Y
, et al
.
CDKN2A-CDKN2B deletion defines an aggressive subset of cutaneous T-cell lymphoma. Modern pathology: an official journal of the United States and Canadian Academy of Pathology
.
Inc.
2010
;
23
(
4
):
547
558
.
56.
Garaicoa
FH
,
Roisman
A
,
Arias
M
, et al
.
Genomic imbalances and microRNA transcriptional profiles in patients with mycosis fungoides
.
Tumour Biol.
2016
;
37
(
10
):
13637
13647
.
57.
Vaqué
JP
,
Gómez-López
G
,
Monsálvez
V
, et al
.
PLCG1 mutations in cutaneous T-cell lymphomas
.
Blood.
2014
;
123
(
13
):
2034
2043
.
58.
Caumont
C
,
Gros
A
,
Boucher
C
, et al
.
PLCG1 gene mutations are uncommon in cutaneous T-cell lymphomas
.
J Invest Dermatol.
2015
;
135
(
9
):
2334
2337
.
59.
Gallardo
F
,
Esteller
M
,
Pujol
RM
,
Costa
C
,
Estrach
T
,
Servitje
O.
Methylation status of the p15, p16 and MGMT promoter genes in primary cutaneous T-cell lymphomas
.
Haematologica.
2004
;
89
(
11
):
1401
1403
.
60.
Ferrara
G
,
Pancione
M
,
Votino
C
, et al
.
A specific DNA methylation profile correlates with a high risk of disease progression in stage I classical (Alibert-Bazin type) mycosis fungoides
.
Br J Dermatol.
2014
;
170
(
6
):
1266
1275
.
61.
Sandoval
J
,
Díaz-Lagares
A
,
Salgado
R
, et al
.
MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T-cell lymphoma
.
J Invest Dermatol.
2015
;
135
(
4
):
1128
1137
.
62.
van Kester
MS
,
Ballabio
E
,
Benner
MF
, et al
.
miRNA expression profiling of mycosis fungoides
.
Mol Oncol.
2011
;
5
(
3
):
273
280
.
63.
Esquela-Kerscher
A
,
Slack
FJ.
Oncomirs – microRNAs with a role in cancer
.
Nat Rev Cancer.
2006
;
6
(
4
):
259
269
.
64.
O’Connell
RM
,
Rao
DS
,
Chaudhuri
AA
,
Baltimore
D.
Physiological and pathological roles for microRNAs in the immune system
.
Nat Rev Immunol.
2010
;
10
(
2
):
111
122
.
65.
O’Connell
RM
,
Rao
DS
,
Chaudhuri
AA
, et al
.
Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder
.
J Exp Med.
2008
;
205
(
3
):
585
594
.
66.
Ralfkiaer
U
,
Hagedorn
PH
,
Bangsgaard
N
, et al
.
Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL)
.
Blood.
2011
;
118
(
22
):
5891
5900
.
67.
Yi
R
,
Poy
MN
,
Stoffel
M
,
Fuchs
E.
A skin microRNA promotes differentiation by repressing ‘stemness’
.
Nature.
2008
;
452
(
7184
):
225
229
.
68.
Gregory
PA
,
Bert
AG
,
Paterson
EL
, et al
.
The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
.
Nat Cell Biol.
2008
;
10
(
5
):
593
601
.
69.
Yu
J
,
Peng
H
,
Ruan
Q
,
Fatima
A
,
Getsios
S
,
Lavker
RM.
MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2
.
FASEB J.
2010
;
24
(
10
):
3950
3959
.
70.
Kopp
KL
,
Ralfkiaer
U
,
Gjerdrum
LM
, et al
.
STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma
.
Cell Cycle.
2013
;
12
(
12
):
1939
1947
.
71.
Tensen
CP
,
Vermeer
MH.
MicroRNA-155 potentiates tumour development in mycosis fungoides
.
Br J Dermatol.
2017
;
177
(
3
):
618
620
.
72.
Moyal
L
,
Yehezkel
S
,
Gorovitz
B
, et al
.
Oncogenic role of microRNA-155 in mycosis fungoides: an in vitro and xenograft mouse model study
.
Br J Dermatol.
2017
;
177
(
3
):
791
800
.
73.
Seto
AG
,
Beatty
X
,
Lynch
JM
, et al
.
Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma
.
Br J Haematol.
2018
;
183
(
3
):
428
444
.
74.
Kohnken
R
,
Wen
J
,
Mundy-Bosse
B
, et al
.
Diminished microRNA-29b level is associated with BRD4-mediated activation of oncogenes in cutaneous T-cell lymphoma
.
Blood.
2018
;
131
(
7
):
771
781
.
75.
Lindahl
LM
,
Willerslev-Olsen
A
,
Gjerdrum
LMR
, et al
.
Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma
.
Blood.
2019
;
134
(
13
):
1072
1083
.
76.
Pérez
C
,
Mondéjar
R
,
García-Díaz
N
, et al
.
Advanced-stage mycosis fungoides: role of the signal transducer and activator of transcription 3, nuclear factor-κB and nuclear factor of activated T cells pathways
.
Br J Dermatol.
2020
;
182
(
1
):
147
155
.
77.
Liau
NPD
,
Laktyushin
A
,
Lucet
IS
, et al
.
The molecular basis of JAK/STAT inhibition by SOCS1
.
Nat Commun.
2018
;
9
(
1
):
1558
.
78.
Walia
R
,
Yeung
CCS.
An update on molecular biology of cutaneous T cell lymphoma
. Front Oncol.
2020
;
9
:
1558
.
79.
de Masson
A
,
O’Malley
JT
,
Elco
CP
, et al
.
High-throughput sequencing of the T cell receptor β gene identifies aggressive early-stage mycosis fungoides
.
Sci Transl Med.
2018
;
10
(
440
):
eaar5894
.
80.
O'Malley
JT
,
de Masson
A
,
Lowry
EL
, et al
.
Radiotherapy eradicates malignant T cells and is associated with improved survival in early-stage mycosis fungoides
.
Clin Cancer Res.
2020
;
26
(
2
):
408
418
.
81.
Iyer
A
,
Hennessey
D
,
O’Keefe
S
, et al
.
Skin colonization by circulating neoplastic clones in cutaneous T-cell lymphoma
.
Blood.
2019
;
134
(
18
):
1517
1527
.
82.
Willemze
R
,
Jaffe
ES
,
Burg
G
, et al
.
WHO-EORTC classification for cutaneous lymphomas
.
Blood.
2005
;
105
(
10
):
3768
3785
.
83.
Bekkenk
MW
,
Geelen
FA
,
van Voorst Vader
PC
, et al
.
Primary and secondary cutaneous CD30(+) lymphoproliferative disorders: a report from the Dutch Cutaneous Lymphoma Group on the long-term follow-up data of 219 patients and guidelines for diagnosis and treatment
.
Blood.
2000
;
95
(
12
):
3653
3661
.
84.
Stein
H
,
Foss
HD
,
Dürkop
H
, et al
.
CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features
.
Blood.
2000
;
96
(
12
):
3681
3695
.
85.
Velusamy
T
,
Kiel
MJ
,
Sahasrabuddhe
AA
, et al
.
A novel recurrent NPM1-TYK2 gene fusion in cutaneous CD30-positive lymphoproliferative disorders
.
Blood.
2014
;
124
(
25
):
3768
3771
.
86.
Crescenzo
R
,
Abate
F
,
Lasorsa
E
, et al
.
European T-Cell Lymphoma Study Group, T-Cell Project: Prospective Collection of Data in Patients with Peripheral T-Cell Lymphoma and the AIRC 5xMille Consortium “Genetics-Driven Targeted Management of Lymphoid Malignancies”
.
Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma [correction published in Cancer Cell. 2015;27(5):P744]
.
Cancer Cell.
2015
;
27
(
4
):
516
532
.
87.
Hu
G
,
Dasari
S
,
Asmann
YW
, et al
.
Targetable fusions of the FRK tyrosine kinase in ALK-negative anaplastic large cell lymphoma
.
Leukemia.
2018
;
32
(
2
):
565
569
.
88.
Luchtel
RA
,
Dasari
S
,
Oishi
N
, et al
.
Molecular profiling reveals immunogenic cues in anaplastic large cell lymphomas with DUSP22 rearrangements
.
Blood.
2018
;
132
(
13
):
1386
1398
.
89.
Luchtel
RA
,
Zimmermann
MT
,
Hu
G
, et al
.
Recurrent MSCE116K mutations in ALK-negative anaplastic large cell lymphoma
.
Blood.
2019
;
133
(
26
):
2776
2789
.
90.
Prutsch
N
,
Gurnhofer
E
,
Suske
T
, et al
.
Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma [correction published in Leukemia. 2020;34:3105]
.
Leukemia.
2019
;
33
(
3
):
696
709
.
91.
van Kester
MS
,
Tensen
CP
,
Vermeer
MH
, et al
.
Cutaneous anaplastic large cell lymphoma and peripheral T-cell lymphoma NOS show distinct chromosomal alterations and differential expression of chemokine receptors and apoptosis regulators
.
J Invest Dermatol.
2010
;
130
(
2
):
563
575
.
92.
Prieto-Torres
L
,
Rodriguez-Pinilla
SM
,
Onaindia
A
,
Ara
M
,
Requena
L
,
Piris
MA.
CD30-positive primary cutaneous lymphoproliferative disorders: molecular alterations and targeted therapies
.
Haematologica.
2019
;
104
(
2
):
226
235
.
93.
Melchers
RC
,
Willemze
R
,
van de Loo
M
, et al
.
Clinical, histologic, and molecular characteristics of anaplastic lymphoma kinase-positive primary cutaneous anaplastic large cell lymphoma
.
Am J Surg Pathol.
 2020;
44
(
6
):
776
781
.
94.
Oschlies
I
,
Lisfeld
J
,
Lamant
L
, et al
.
ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases. A report from the ALCL99 study
.
Haematologica.
2013
;
98
(
1
):
50
56
.
95.
Pulitzer
M
,
Ogunrinade
O
,
Lin
O
,
Steinherz
P.
ALK-positive (2p23 rearranged) anaplastic large cell lymphoma with localization to the skin in a pediatric patient
.
J Cutan Pathol.
2015
;
42
(
3
):
182
187
.
96.
Melchers
RC
,
Willemze
R
,
van Doorn
R
, et al
.
Corresponding anaplastic lymphoma kinase-tropomyosin 3 (ALK-TPM3) fusion in a patient with a primary cutaneous anaplastic large-cell lymphoma and a Spitz nevus
.
JAAD Case Rep.
2019
;
5
(
11
):
970
972
.
97.
Melchers
RC
,
Willemze
R
,
Vermaat
JSP
, et al
.
Outcomes of rare patients with a primary cutaneous CD30+ lymphoproliferative disorder developing extracutaneous disease
.
Blood.
2020
;
135
(
10
):
769
773
.
98.
Feldman
AL
,
Law
M
,
Remstein
ED
, et al
.
Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas
.
Leukemia.
2009
;
23
(
3
):
574
580
.
99.
Kiran
T
,
Demirkesen
C
,
Eker
C
,
Kumusoglu
H
,
Tuzuner
N.
The significance of MUM1/IRF4 protein expression and IRF4 translocation of CD30(+) cutaneous T-cell lymphoproliferative disorders: a study of 53 cases
.
Leuk Res.
2013
;
37
(
4
):
396
400
.
100.
Pham-Ledard
A
,
Prochazkova-Carlotti
M
,
Laharanne
E
, et al
.
IRF4 gene rearrangements define a subgroup of CD30-positive cutaneous T-cell lymphoma: a study of 54 cases
.
J Invest Dermatol.
2010
;
130
(
3
):
816
825
.
101.
Wada
DA
,
Law
ME
,
Hsi
ED
, et al
.
Specificity of IRF4 translocations for primary cutaneous anaplastic large cell lymphoma: a multicenter study of 204 skin biopsies
.
Modern Pathol.
2011
;
24
(
4
):
596
605
.
102.
Karai
LJ
,
Kadin
ME
,
Hsi
ED
, et al
.
Chromosomal rearrangements of 6p25.3 define a new subtype of lymphomatoid papulosis
.
Am J Surg Pathol.
2013
;
37
(
8
):
1173
1181
.
103.
Benner
MF
,
Ballabio
E
,
van Kester
MS
, et al
.
Primary cutaneous anaplastic large cell lymphoma shows a distinct miRNA expression profile and reveals differences from tumor-stage mycosis fungoides
.
Exp Dermatol.
2012
;
21
(
8
):
632
634
.
104.
Sun
J
,
Yi
S
,
Qiu
L
, et al
.
SATB1 defines a subtype of cutaneous cd30+ lymphoproliferative disorders associated with a T-helper 17 cytokine profile
.
J Invest Dermatol.
2018
;
138
(
8
):
1795
1804
.
105.
Prince
HM
,
Kim
YH
,
Horwitz
SM
, et al
.
ALCANZA study group
.
Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial
.
Lancet.
2017
;
390
(
10094
):
555
566
.
106.
Berti
E
,
Gaulard
P
,
Willemze
R
,
Petrella
T
,
Jaffe
E.
Primary cutaneous CD8+ aggressive epidermotropic cytotoxic T‐cell lymphoma. In:
Swerdlow
SH
,
Campo
E
,
Harris
N
, et al, eds.
WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues
. 4th ed.
Lyon, France
:
IARC
;
2017
.
107.
Berti
E
,
Tomasini
D
,
Vermeer
MH
,
Meijer
CJLM
,
Alessi
E
,
Willemze
R.
Primary cutaneous CD8-positive epidermotropic cytotoxic T cell lymphomas. A distinct clinicopathological entity with an aggressive clinical behavior
.
Am J Pathol.
1999
;
155
(
2
):
483
492
.
108.
Kato
K
,
Oh
Y
,
Takita
J
, et al
.
Molecular genetic and cytogenetic analysis of a primary cutaneous CD8-positive aggressive epidermotropic cytotoxic T-cell lymphoma
.
Int J Hematol.
2016
;
103
(
2
):
196
201
.
109.
Tomasini
C
,
Novelli
M
,
Fanoni
D
,
Berti
EF.
Erythema multiforme-like lesions in primary cutaneous aggressive cytotoxic epidermotropic CD8+ T-cell lymphoma: a diagnostic and therapeutic challenge
.
J Cutan Pathol.
2017
;
44
(
10
):
867
873
.
110.
Fanoni
D
,
Corti
L
,
Alberti-Violetti
S
, et al
.
Array-based CGH of primary cutaneous CD8+ aggressive EPIDERMO-tropic cytotoxic T-cell lymphoma
.
Genes Chromosomes Cancer.
2018
;
57
(
12
):
622
629
.
111.
Bastidas Torres
AN
,
Cats
D
,
Out-Luiting
JJ
, et al
.
Deregulation of JAK2 signaling underlies primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma
.
Haematologica.
2021
. https://doi.org/10.3324/haematol.2020.274506.
112.
Yamamoto-Sugitani
M
,
Kuroda
J
,
Shimura
Y
, et al
.
Comprehensive cytogenetic study of primary cutaneous gamma-delta T-cell lymphoma by means of spectral karyotyping and genome-wide single nucleotide polymorphism array
.
Cancer Genet.
2012
;
205
(
9
):
459
464
.
113.
Daniels
J
,
Doukas
PG
,
Escala
MEM
, et al
.
Cellular origins and genetic landscape of cutaneous gamma delta T cell lymphomas
.
Nat Commun.
2020
;
11
(
1
):
1806
.
114.
Gayden
T
,
Sepulveda
FE
,
Khuong-Quang
DA
, et al
.
Germline HAVCR2 mutations altering TIM-3 characterize subcutaneous panniculitis-like T cell lymphomas with hemophagocytic lymphohistiocytic syndrome [correction published in Nat Genet. 2019;51:196]
.
Nat Genet.
2018
;
50
(
12
):
1650
1657
.
115.
Polprasert
C
,
Takeuchi
Y
,
Kakiuchi
N
, et al
.
Frequent germline mutations of HAVCR2 in sporadic subcutaneous panniculitis-like T-cell lymphoma
.
Blood Adv.
2019
;
3
(
4
):
588
595
.
116.
Li
Z
,
Lu
L
,
Zhou
Z
, et al
.
Recurrent mutations in epigenetic modifiers and the PI3K/AKT/mTOR pathway in subcutaneous panniculitis-like T-cell lymphoma
.
Br J Haematol.
2018
;
181
(
3
):
406
410
.
117.
Fujiwara
SI
,
Yamashita
Y
,
Nakamura
N
, et al
.
High-resolution analysis of chromosome copy number alterations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified, with single nucleotide polymorphism-typing microarrays
.
Leukemia.
2008
;
22
(
10
):
1891
1898
.
118.
Mimitou
EP
,
Cheng
A
,
Montalbano
A
, et al
.
Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells
.
Nat Methods.
2019
;
16
(
5
):
409
412
.
119.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med.
2018
;
378
(
15
):
1396
1407
.
Sign in via your Institution