• In a majority of patients with advanced SM, neoplastic MCs express the target receptor CD30.

  • The CD30-targeting drug brentuximab-vedotin blocks growth and survival in CD30+ neoplastic MCs which favors drug development in advanced SM.

The Ki-1 antigen (CD30) is an established therapeutic target in patients with Hodgkin lymphoma and anaplastic large-cell lymphoma. We have recently shown that CD30 is expressed abundantly in the cytoplasm of neoplastic mast cells (MCs) in patients with advanced systemic mastocytosis (SM). In the current study, we asked whether CD30 is expressed on the surface of neoplastic MCs in advanced SM, and whether this surface structure may serve as therapeutic target in SM. As assessed by flow cytometry, CD30 was found to be expressed on the surface of neoplastic MCs in 3 of 25 patients (12%) with indolent SM, 4 of 7 patients (57%) with aggressive SM, and 4 of 7 patients (57%) with MC leukemia. The immature RAS-transformed human MC line MCPV-1.1 also expressed cell surface CD30, whereas the KIT-transformed MC line HMC-1.2 expressed no detectable CD30. The CD30-targeting antibody-conjugate brentuximab-vedotin inhibited proliferation in neoplastic MCs, with lower IC50 values obtained in CD30+ MCPV-1.1 cells (10 µg/mL) compared with CD30 HMC-1.2 cells (>50 µg/mL). In addition, brentuximab-vedotin suppressed the engraftment of MCPV-1.1 cells in NSG mice. Moreover, brentuximab-vedotin produced apoptosis in all CD30+ MC lines tested as well as in primary neoplastic MCs in patients with CD30+ SM, but did not induce apoptosis in neoplastic MCs in patients with CD30 SM. Furthermore, brentuximab-vedotin was found to downregulate anti-IgE–induced histamine release in CD30+ MCs. Finally, brentuximab-vedotin and the KIT D816V-targeting drug PKC412 produced synergistic growth-inhibitory effects in MCPV-1.1 cells. Together, CD30 is a promising new drug target for patients with CD30+ advanced SM.

Systemic mastocytosis (SM) is a myeloid neoplasm defined by expansion and accumulation of neoplastic mast cells (MCs) in various organs.1-6  Based on clinical presentation and SM-related organ damage, indolent and aggressive variants of SM have been defined.6-10  Patients with indolent SM (ISM) usually suffer from mediator-related symptoms and/or from the cosmetic consequences of the disease. Otherwise, however, ISM patients have a normal or almost normal life expectancy without overt hematologic problems.1-4,11-14  In contrast, patients with advanced SM, including aggressive SM (ASM) and MC leukemia (MCL), have a dismal prognosis with short survival times.11-16  In these patients, the invasive growth of neoplastic MCs in the bone marrow (BM), liver, and other visceral organs leads to organ damage.11-16  Moreover, in advanced SM, neoplastic MCs are often resistant against various cytoreductive drugs.11-18  Therefore, these patients are candidates for experimental therapies. Indeed, several attempts have been made to develop more effective treatment approaches and to identify novel therapeutic targets in neoplastic MCs.17-20 

In a vast majority of all patients with advanced SM, the transforming KIT mutation D816V is displayed by neoplastic cells.21-24  This mutation causes ligand-independent activation of KIT and is considered to contribute to malignant expansion of MCs in SM.2-6,25  Therefore, drugs interfering with the tyrosine kinase (TK) activity of KIT D816V have recently been used.17-20,26-32  These drugs include midostaurin (PKC412), nilotinib, and dasatinib.19,26-32  However, despite impressive effects in cell line models and a clinical trial using PKC412, these drugs may not be sufficient to induce long-lasting complete responses in ASM and MCL. More recently, we have shown that combinations of various KIT TK inhibitors (TKIs) exert synergistic growth-inhibitory effects on neoplastic MCs.19,27,32  However, in neoplastic MCs bearing KIT D816V, only a few drug combinations induced synergistic effects.32  Therefore, current research is seeking new targets and targeted drugs for ASM and MCL.

The Ki-1 antigen, also known as CD30, has long been recognized as a rather specific marker of Hodgkin disease and ALK+ anaplastic large-cell lymphomas.33,34  Other hematologic neoplasms are usually CD30. However, recent data suggest that neoplastic MCs in advanced SM also express the Ki-1 antigen in their cytoplasm.35,36  Notably, whereas in ISM, most neoplastic MCs are CD30 cells, CD30 is expressed abundantly in the cytoplasm of MCs in patients with ASM and MCL.35,36  More recent data suggest that neoplastic MCs also express CD30 on their cell surface.37 

In this study, we examined the expression of CD30 in various human MC lines and primary neoplastic MCs and asked whether CD30 may serve as a therapeutic target.

Isolation and culture of primary cells

BM samples were obtained from 45 patients with SM (ISM, n = 25; SM with associated hematologic non-MC disease [SM-AHNMD], n = 6; ASM, n = 7; MCL, n = 7) and 6 controls (normal/reactive BM). BM mononuclear cells (MNCs) were isolated using Ficoll (supplemental Table 1, see supplemental Data available on the Blood Web site). All donors gave written informed consent. The study was approved by the ethics committee of the Medical University of Vienna. Human MC lines used in this study were HMC-1.1, HMC-1.2,19,38  MCPV-1.1, and MCPV-1.4.39  In addition, we used a canine mastocytoma cell line, C2.40  A detailed description of cell lines is provided in the supplemental Methods.

Multicolor flow cytometry

Heparinized BM cells (106 leukocytes per tube) of 51 donors were incubated with a phycoerythrin (PE)-labeled CD30 monoclonal antibody (mAb), allophycocyanin (APC)-labeled CD38 mAb, PE-Cy7–labeled CD117 mAb, APC-Cy7–labeled CD45 mAb, and Pacific Blue–labeled CD34 mAb (supplemental Table 2) at room temperature for 15 minutes. Then, erythrocytes were lysed in FACS lysing solution (BD Biosciences). Afterward, cells were washed and analyzed on a FACSCantoII (BD Biosciences) using FACSDiva (BD Biosciences) and FlowJo software (TreeStar). MCs were detected by their typical forward/side-scatter characteristics and their unique phenotype (CD45+/CD117++/CD34). Flow cytometry results obtained with CD117++ MCs were expressed as ratio of median fluorescence intensities (MFIs) obtained with specific mAbs and MFIs obtained with isotype-matched control mAb (MFI test mAb:MFI control mAb). Results obtained from MFI calculations (ratio) were scored: MFI ratio, 10.01 to 100: ++; MFI ratio, 3.01 to 10: +; MFI ratio, 1.51 to 3: ±; MFI ratio, <1.5: –.

Immunohistochemistry and immunocytochemistry

Immunohistochemistry (IHC) was performed on paraffin-embedded BM sections obtained from 44 patients with SM using the indirect immunoperoxidase staining technique as reported.19  Immunocytochemistry (ICC) was performed as reported19  using cytospin preparations of HMC-1.1, HMC-1.2, MCPV-1.1, MCPV-1.4, and C2 cells as well as primary MCs obtained from 2 patients with MCL (#39, #43). Staining methods are described in detail in the supplemental Methods.

Quantitative PCR

Total RNA was isolated from MNCs of 29 patients with SM (ISM, n = 17; SM-AHNMD, n = 3; ASM, n = 5; MCL, n = 4) using the RNeasy MinElute Cleanup kit (Qiagen).41  The quantitative PCR (qPCR) technique is described in the supplemental Methods.

Measurement of sCD30 in patients’ sera

Serum levels of soluble CD30 (sCD30) were determined in 10 healthy controls and in 36 patients with mastocytosis, including 6 with cutaneous mastocytosis (CM), 25 with ISM, 3 with ASM, and 2 with MCL. Serum sCD30 levels were quantified using a commercial enzyme-linked immunosorbent assay (ELISA; eBioscience) following the manufacturer’s instructions. The detection limit of sCD30 in this assay was 6.4 ng/mL.

Evaluation of apoptosis and cell cycle progression in MC lines

For flow cytometric determination of apoptosis and viability, Annexin V/propidium iodide (PI) staining and active caspase-3 staining were performed as described.27,32  In brief, MCPV-1 cells, HMC-1 cells, and C2 cells were kept in control medium or brentuximab-vedotin (2.5-10 µg/mL) at 37°C for 96 hours. For Annexin V/PI staining, cells were incubated with Annexin V–fluorescein isothiocyanate (FITC) in binding buffer containing N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES; 10 mM, pH 7.4), NaCl (140 mM), and CaCl2 (2.5 mM). Thereafter, PI (1 µg/mL) was added and cells analyzed by flow cytometry. For active caspase-3 staining, cells were fixed in formaldehyde (2%) and permeabilized using methanol (100%) at −20°C for 30 minutes. Cells were analyzed on a FACSCalibur (BD Biosciences). For cell cycle studies, cells were incubated in control medium or in brentuximab-vedotin (2.5-10 µg/mL) for 96 hours. Then, cells were resuspended in 300 µL of permeabilization buffer (0.1% sodium acetate and 0.1% Triton X-100). Thereafter, 3 µL of RNAse (100 µg/mL) and 25 µL of PI were added. Cell cycle distribution was analyzed on a FACSCalibur as reported.27,32 

Evaluation of apoptosis in primary neoplastic MCs

Primary BM cells obtained from 3 patients with CD30+ SM (ASM, n = 2; MCL, n = 1) and 3 with CD30 SM (ISM-AHNMD, n = 2; MCL, n = 1) were incubated in control medium or brentuximab-vedotin (2.5-10 µg/mL) at 37°C for 96 hours. Then, CD117++/CD34 MCs were examined by staining for Annexin V-FITC and 4′,6-diamidino-2-phenylindole (DAPI) or active caspase-3 as described.41  Apoptosis was expressed as percentage of Annexin V+ cells after gating for DAPI cells (thereby excluding early apoptotic cells) and as a percentage of active caspase-3+ cells.

Evaluation of effects of brentuximab-vedotin on proliferation

HMC-1 cells, MCPV-1 cells, C2 cells (104 per well), and primary patient-derived BM-MNCs (106 per well) were seeded in 96-well plates (TPP) and incubated in increasing concentrations of brentuximab-vedotin (0.1-50 µg/mL) at 37°C for 96 hours. After incubation, 3H-thymidine (0.5 µCi per well) was added for 16 hours. Cells were then harvested and radioactivity determined in a β-counter (MicroBeta2 ; Perkin Elmer).19,27  To determine potential additive or synergistic drug effects, HMC-1.1, HMC-1.2, MCPV-1.1, MCPV-1.4, and C2 cells were exposed to brentuximab-vedotin and PKC412 as single agents or in combination at a fixed ratio of drug concentrations at 37°C for 96 hours.

Repopulation of MCs in NSG mice

Before being injected into NOD-SCID IL-2Rγnull (NSG) mice, CD30+ MCPV-1.1 cells were incubated in control medium or in brentuximab-vedotin (20-50 µg/mL) at 37°C for 1 hour. In a separate experiment, a more resistant subset of MCPV-1.1 cells were treated with control medium, brentuximab-vedotin (100 µg/mL), PKC412 (2 µM), or a combination of both drugs (same concentrations) at 37°C for 1 hour. Then, cells were checked for viability, resuspended in 0.15 mL of phosphate-buffered saline with 2% fetal calf serum, and injected into the tail vein of adult female NSG mice (3 × 106 per mouse, 5 mice per group) (The Jackson Laboratory). Prior to injection, mice were irradiated (2.4 Gy). After injection, mice were inspected daily and sacrificed as soon as symptoms occurred or after a maximum of 5 weeks. Then, BM cells were obtained from flushed femurs, tibias, and humeri, and MCPV-1.1 cells quantified by multicolor flow cytometry using mAbs against CD117 and CD45. Animal studies were approved by the ethics committee of the Medical University of Vienna and the University of Veterinary Medicine Vienna, and the national authority, according to §§26ff of the 2012 Animal Experiments Act. An animal experiment license was granted under BMWF-66.009/0296-II/3b/2011.

Histamine release experiments

Dextran-enriched blood basophils (BAs; 1 × 106/mL) obtained from healthy donors (n = 3) or patients with SM (CD30+, n = 3; CD30, n = 3) were incubated in control medium or brentuximab-vedotin (0.1-10 µg/mL) at 37°C for 30 minutes. Then, cells were incubated in control histamine release (HR) buffer (HRB) or HRB containing anti-immunoglobulin E (IgE) antibody E-124.2.8 (1 µg/mL) at 37°C for 30 minutes. Then, cells were centrifuged at 4°C. Cell-free supernatants and cell suspensions were recovered and analyzed for histamine content by radioimmunoassay. HR was calculated as a percentage of released histamine compared with total (cellular + extracellular) histamine.

Evaluation of activation-linked cell surface antigens by flow cytometry

For examination of drug effects on expression of CD63 and CD203c on BAs and MCs, flow cytometry was performed. HMC-1.1, HMC-1.2, MCPV-1.1, and BAs from healthy donors (n = 3) were incubated in brentuximab-vedotin (0.1-10 µg/mL) or control medium for 30 minutes (37°C). Cell lines were then examined for expression of CD63 and CD203c using mAbs (supplemental Table 2) by flow cytometry. Drug-exposed primary BAs were further incubated with anti-IgE mAb E-124.2.8 (1 µg/mL) at 37°C for 15 minutes, washed, subjected to erythrocyte lysis, and analyzed by flow cytometry using mAbs against CD63 and CD203c. The anti-IgE–induced upregulation of CD63 and CD203c on primary BAs was calculated from mean fluorescence intensities (MFIs) obtained with stimulated (MFIstim) and unstimulated (MFIcontrol) cells and expressed as stimulation index (SI = MFIstim:MFIcontrol).

Statistical evaluation of data

Significances in differences in growth and apoptosis were determined by the Student t test for dependent samples. Results were considered significant when P < .05. Drug interactions (additive, synergistic, and antagonistic) were examined by calculating combination index (CI) values using CalcuSyn software (Biosoft).42  A CI value of 1 indicates an additive effect, whereas CI values below 1 indicate synergistic drug effects.

Neoplastic MCs express cell surface CD30

As assessed by flow cytometry, CD30 was expressed on neoplastic MCs in 3 of 25 patients (12%) with ISM, 4 of 7 (57%) with ASM, and 4 of 7 (57%) with MCL (Figure 1A). In most patients, CD30 expression in MCs was confirmed by IHC on BM sections (Table 1). Confirming previous studies,35  MCs were found to express cytoplasmic CD30 in most patients with advanced SM examined. However, in some of these patients, neoplastic MCs stained negative for cytoplasmic CD30 (Table 1). In most patients with ISM, neoplastic MCs expressed only low amounts or no cytoplasmic CD30. We also found a correlation between the type of SM and surface CD30 expression on MCs (Table 1). In particular, CD30 levels on MCs in patients with ASM and MCL were higher than that in ISM (median CD30 MFI: ASM/MCL, 4.24 vs ISM, 1.88, P < .05) (Table 1). However, in some patients with advanced SM (ASM/MCL) MCs stained negative for CD30. CD30 was also detected on the surface of MCPV-1.1 cells, an immature RAS-transformed human MC line, and in the canine mastocytoma cell line C2 (Figure 1B). The HMC-1.1 cell line expressed low levels of surface CD30, and HMC-1.2 cells stained negative for CD30 (Figure 1B). Expression of CD30 in MC lines and primary neoplastic MCs was also demonstrable by ICC and IHC (supplemental Figure 1). In most patients and all cell lines examined, expression of cytoplasmic CD30 was found to correlate with cell surface staining results (Table 1; supplemental Figure 1A).

Figure 1

Expression of surface CD30 on neoplastic MCs. (A) BM cells of patients with ISM ([#1], left panel), ASM ([#32], middle panel), or MCL ([#39], right panel) were stained with antibodies against CD34, CD45, CD38, CD117, and CD30. After erythrocyte lysis, expression of CD30 on CD117++ (CD45+/CD34) MCs was analyzed by flow cytometry on a FACSCantoII (BD Biosciences). The black open histograms show the isotype control and the red histograms represent CD30 expression on CD117++ MCs. Patients [#] refer to the numbers in Table 1. (B) HMC-1.1 cells, HMC-1.2 cells (top panel), MCPV-1.1 cells, MCPV-1.4 cells (middle panel), and C2 cells (bottom panel) were first incubated with Fc-blocking reagent and then with PE-labeled antibody Ber-H2 directed against CD30. After incubation for 15 minutes, expression of CD30 was analyzed by flow cytometry on a FACSCalibur (BD Biosciences). Black open histograms show the isotype-matched control antibody, and red histograms reactivity with the CD30 antibody.

Figure 1

Expression of surface CD30 on neoplastic MCs. (A) BM cells of patients with ISM ([#1], left panel), ASM ([#32], middle panel), or MCL ([#39], right panel) were stained with antibodies against CD34, CD45, CD38, CD117, and CD30. After erythrocyte lysis, expression of CD30 on CD117++ (CD45+/CD34) MCs was analyzed by flow cytometry on a FACSCantoII (BD Biosciences). The black open histograms show the isotype control and the red histograms represent CD30 expression on CD117++ MCs. Patients [#] refer to the numbers in Table 1. (B) HMC-1.1 cells, HMC-1.2 cells (top panel), MCPV-1.1 cells, MCPV-1.4 cells (middle panel), and C2 cells (bottom panel) were first incubated with Fc-blocking reagent and then with PE-labeled antibody Ber-H2 directed against CD30. After incubation for 15 minutes, expression of CD30 was analyzed by flow cytometry on a FACSCalibur (BD Biosciences). Black open histograms show the isotype-matched control antibody, and red histograms reactivity with the CD30 antibody.

Close modal
Table 1

Expression of CD30 on CD117++ MCs in patients with mastocytosis

No.SexAge, yDiagnosisSerum tryptase, ng/mLCD30 surface expression on MCs (MFI ratio)CD30 IHC
68 ISM 42 +(3.7) ± 
63 ISM 32.7 +(3.05) ± 
50 ISM 19.7 +(3.02) ± 
63 ISM 77.8 ±(1.94) ± 
56 ISM 289 ±(1.88) 
43 ISM 36.2 ±(1.76) ± 
55 ISM 124 ±(2.03) 
53 ISM 61.2 ±(2.44) − 
24 ISM 53.7 ±(2.08) ± 
10 39 ISM 106 ±(2.41) ± 
11 47 ISM 82.5 ±(2.00) ± 
12 53 ISM 40.9 ±(2.30) ± 
13 35 ISM 34.1 ±(1.57) − 
14 57 ISM 11.2 ±(1.58) − 
15 57 ISM 55.1 ±(2.23) ± 
16 59 ISM 42.9 ±(1.53) − 
17 52 ISM 47.4 ±(1.63) ± 
18 64 ISM 33.5 ±(2.08) 
19 36 ISM 19.5 −(0.59) − 
20 41 ISM 34.9 −(1.12) ± 
21 65 ISM 160 −(1.33) − 
22 45 ISM 31.1 −(1.31) ± 
23 47 ISM 28.8 −(1.42) ± 
24 38 ISM 16.8 −(0.77) ± 
25 29 ISM 31.1 −(1.44) − 
26 64 ISM-AHNMD 13.3 ±(2.46) − 
27 65 ISM-AHNMD 37.8 −(0.98) ± 
28 70 ISM-AHNMD 23 −(0.83) ± 
29 63 ASM-AHNMD 80 +(8.93) 
30 70 ASM-AHNMD 48 ±(1.64) ± 
31 73 ISM-AHNMD 67.5 +(5.8) 
32 75 ASM 789 ++(12.93) n.t. 
33 68 ASM 152 +(3.94) ± 
34 79 ASM 146 +(3.50) − 
35 66 ASM 103 +(6.23) ± 
36 71 ASM 113 ±(1.98) 
37 74 ASM 152 −(1.24) − 
38 59 ASM 138 −(1.43) ± 
39 48 MCL 332 +(9.79) 
40 62 MCL 547 +(8.77) ± 
41 75 MCL 431 +(3.14) 
42 58 MCL 151 +(3.04) 
43 54 MCL 904 −(0.87) − 
44 71 MCL 113 −(1.4) ± 
45 63 MCL 767 −(1.05) 
46 44 Normal BM 35.5 −(0.99) − 
47 34 Normal BM 20.1 −(1.31) − 
48 32 Normal BM 14.8 +(3.08)* − 
49 53 Normal BM 18.1 −(0.76) − 
50 67 Normal BM 33.8 −(1.1) − 
51 51 Normal BM 21.1 −(1.01) − 
No.SexAge, yDiagnosisSerum tryptase, ng/mLCD30 surface expression on MCs (MFI ratio)CD30 IHC
68 ISM 42 +(3.7) ± 
63 ISM 32.7 +(3.05) ± 
50 ISM 19.7 +(3.02) ± 
63 ISM 77.8 ±(1.94) ± 
56 ISM 289 ±(1.88) 
43 ISM 36.2 ±(1.76) ± 
55 ISM 124 ±(2.03) 
53 ISM 61.2 ±(2.44) − 
24 ISM 53.7 ±(2.08) ± 
10 39 ISM 106 ±(2.41) ± 
11 47 ISM 82.5 ±(2.00) ± 
12 53 ISM 40.9 ±(2.30) ± 
13 35 ISM 34.1 ±(1.57) − 
14 57 ISM 11.2 ±(1.58) − 
15 57 ISM 55.1 ±(2.23) ± 
16 59 ISM 42.9 ±(1.53) − 
17 52 ISM 47.4 ±(1.63) ± 
18 64 ISM 33.5 ±(2.08) 
19 36 ISM 19.5 −(0.59) − 
20 41 ISM 34.9 −(1.12) ± 
21 65 ISM 160 −(1.33) − 
22 45 ISM 31.1 −(1.31) ± 
23 47 ISM 28.8 −(1.42) ± 
24 38 ISM 16.8 −(0.77) ± 
25 29 ISM 31.1 −(1.44) − 
26 64 ISM-AHNMD 13.3 ±(2.46) − 
27 65 ISM-AHNMD 37.8 −(0.98) ± 
28 70 ISM-AHNMD 23 −(0.83) ± 
29 63 ASM-AHNMD 80 +(8.93) 
30 70 ASM-AHNMD 48 ±(1.64) ± 
31 73 ISM-AHNMD 67.5 +(5.8) 
32 75 ASM 789 ++(12.93) n.t. 
33 68 ASM 152 +(3.94) ± 
34 79 ASM 146 +(3.50) − 
35 66 ASM 103 +(6.23) ± 
36 71 ASM 113 ±(1.98) 
37 74 ASM 152 −(1.24) − 
38 59 ASM 138 −(1.43) ± 
39 48 MCL 332 +(9.79) 
40 62 MCL 547 +(8.77) ± 
41 75 MCL 431 +(3.14) 
42 58 MCL 151 +(3.04) 
43 54 MCL 904 −(0.87) − 
44 71 MCL 113 −(1.4) ± 
45 63 MCL 767 −(1.05) 
46 44 Normal BM 35.5 −(0.99) − 
47 34 Normal BM 20.1 −(1.31) − 
48 32 Normal BM 14.8 +(3.08)* − 
49 53 Normal BM 18.1 −(0.76) − 
50 67 Normal BM 33.8 −(1.1) − 
51 51 Normal BM 21.1 −(1.01) − 

Score of antibody reactivity by flow cytometry: ++, MFI ratio 10-100; +, MFI ratio 3.01-9.99; ±, MFI ratio 1.51-3; −, MFI ratio <1.5.

Score of antibody reactivity by IHC: +, most cells (>50%) strongly reactive; ±, most cells (>50%) weakly reactive; −, <10% of cells reactive.

F, female; M, male; n.t., not tested.

*

In this patient, serum tryptase was slightly elevated and very few atypical MCs were found, but no KIT mutation was detected and no histologic evidence of SM could be substantiated.

Detection of increased serum levels of sCD30 in advanced SM

The levels of sCD30 in the sera of healthy controls (n = 10) ranged between 6.4 and 28.5 ng/mL (median, 8.1 ng/mL). In patients with mastocytosis, increased levels of sCD30 were detected. However, serum levels of sCD30 were found to vary among patients and to correlate with the variant of disease (Figure 2). In patients with CM (n = 6), sCD30 levels were only slightly elevated (median, 11.2 ng/mL; range, 7.3-31.0 ng/mL). Higher levels of sCD30 were detected in 25 patients with ISM (median, 21.0 ng/mL; range, 7.1-149.0 ng/mL) (Figure 2). The highest levels of sCD30 were measured in patients with ASM or MCL (n = 5), with a median of 129.0 ng/mL (Figure 2). However, no significant correlation between serum tryptase and sCD30 concentrations was found in our SM patients (not shown).

Figure 2

Serum concentrations of sCD30 in patients with mastocytosis. Serum levels of sCD30 were determined in 10 normal (healthy) donors (ND), 6 patients with CM, 25 with ISM, 3 with ASM, and 2 with MCL. sCD30 levels were quantified using a commercial ELISA. The detection limit of this assay was found to be 6.4 ng/mL. Results represent sCD30 levels in each cohort (patients or controls) and represent the mean ± standard deviation (SD) of all donors in each group. *P < .05.

Figure 2

Serum concentrations of sCD30 in patients with mastocytosis. Serum levels of sCD30 were determined in 10 normal (healthy) donors (ND), 6 patients with CM, 25 with ISM, 3 with ASM, and 2 with MCL. sCD30 levels were quantified using a commercial ELISA. The detection limit of this assay was found to be 6.4 ng/mL. Results represent sCD30 levels in each cohort (patients or controls) and represent the mean ± standard deviation (SD) of all donors in each group. *P < .05.

Close modal

Expression of CD30 in neoplastic MCs is regulated by a MEK-dependent pathway

We next examined the regulation of expression of CD30 in neoplastic MCs. In a first step, we confirmed CD30 messenger RNA (mRNA) expression in CD30+ HMC-1.1 cells, MCPV-1.1 cells, and C2 cells as well as in primary MNCs of patients with MCL containing >90% MCs (supplemental Figure 2). In HMC-1.2 cells and MCPV-1.4 cells, CD30 transcripts were also detectable by qPCR, but the levels of CD30 mRNA expression were substantially lower compared with MCPV-1.1. These data suggest that surface levels of CD30 roughly correlate with mRNA expression levels. Next, we applied various signal transduction inhibitors. As visible in supplemental Figure 3, the mitogen-activated protein kinase kinase (MEK) inhibitors PD032509 and RDEA119 were found to downregulate expression of cell surface CD30 and CD30 mRNA levels in HMC-1.1 cells and MCPV-1.1 cells. The KIT-targeting TKI PKC412, the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) blocker BEZ235, and the signal transducer and activator of transcription 5 (STAT5)-targeting drug piceatannol also decreased CD30 expression in HMC-1.1 and MCPV-1.1 cells, but the effects of these compounds were much weaker compared with the MEK inhibitors tested. The STAT5 inhibitor pimozide showed no effects on expression of CD30 in HMC-1.1 or MCPV-1.1 cells (not shown). These data suggest that expression of CD30 in neoplastic MCs is regulated by a MEK-dependent signaling pathway.

Brentuximab-vedotin inhibits proliferation of neoplastic MCs in vitro and the in vivo engraftment of MCPV-1.1 cells in NSG mice

Brentuximab-vedotin inhibited the proliferation of primary neoplastic MCs in all CD30+ SM patients tested, whereas in SM patients in whom MCs stained negative for CD30, brentuximab-vedotin showed only weak effects or did not block the proliferation of neoplastic MCs (Figure 3A). Corresponding results were obtained in our cell line models: whereas brentuximab-vedotin produced strong and dose-dependent growth inhibition in the CD30+ MC lines MCPV-1.1, HMC-1.1, and C2, only weak effects of brentuximab-vedotin were seen in the CD30 cell lines MCPV-1.4 and HMC-1.2 (Figure 3B). We also examined the effect of brentuximab-vedotin on engraftment of MCPV-1.1 cells in NSG mice. In particular, preincubation of MCPV-1.1 cells with brentuximab-vedotin (20-50 µg/mL) resulted in reduced in vivo engraftment in NSG mice compared with control animals (Figure 3C).

Figure 3

Effect of brentuximab-vedotin on proliferation and cell cycle distribution in neoplastic MCs. (A-B) Primary BM cells obtained from 3 patients with CD30+ SM (ASM, n = 1; MCL, n = 2; A, left panel), 3 patients with CD30 SM (ISM, n = 1; ISM-AHNMD, n = 1; MCL, n = 1; A, right panel), and cell lines (MCPV-1.1, MCPV-1.4, HMC-1, C2) (B) were incubated in control medium (Co) or in various concentrations of brentuximab-vedotin (0.1-50 µg/mL) at 37°C for 96 hours. After incubation, 3H-thymidine uptake was measured. Results represent the mean ± SD from 3 independent experiments. *P < .05. (C) MCPV-1.1 cells were incubated in control medium (Co) or in brentuximab-vedotin (20-50 µg/mL) at 37°C for 1 hour. After incubation, cells were washed and injected into the tail vein of NSG mice (3 × 106 cells/per mouse, 5 mice per group in 3 independent experiments). After 5 weeks, mice were sacrificed and MCPV-1.1 repopulation was measured by determining the percentage of CD45+/CD117+ cells in mouse BM samples by flow cytometry. Results represent mean ± SD from all mice in all experiments. *P < .05. (D) HMC-1.1 cells (top, left panel), HMC-1.2 cells (top, right panel), MCPV-1.1 cells (middle, left panel), MCPV-1.4 cells (middle, right panel), and C2 cells (bottom panel) were incubated in control medium or in various concentrations of brentuximab-vedotin (2.5-10 µg/mL) at 37°C for 96 hours. Then, cell cycle distribution was analyzed by flow cytometry. Results show relative cell numbers and represent the mean ± SD from 3 independent experiments. *P < .05.

Figure 3

Effect of brentuximab-vedotin on proliferation and cell cycle distribution in neoplastic MCs. (A-B) Primary BM cells obtained from 3 patients with CD30+ SM (ASM, n = 1; MCL, n = 2; A, left panel), 3 patients with CD30 SM (ISM, n = 1; ISM-AHNMD, n = 1; MCL, n = 1; A, right panel), and cell lines (MCPV-1.1, MCPV-1.4, HMC-1, C2) (B) were incubated in control medium (Co) or in various concentrations of brentuximab-vedotin (0.1-50 µg/mL) at 37°C for 96 hours. After incubation, 3H-thymidine uptake was measured. Results represent the mean ± SD from 3 independent experiments. *P < .05. (C) MCPV-1.1 cells were incubated in control medium (Co) or in brentuximab-vedotin (20-50 µg/mL) at 37°C for 1 hour. After incubation, cells were washed and injected into the tail vein of NSG mice (3 × 106 cells/per mouse, 5 mice per group in 3 independent experiments). After 5 weeks, mice were sacrificed and MCPV-1.1 repopulation was measured by determining the percentage of CD45+/CD117+ cells in mouse BM samples by flow cytometry. Results represent mean ± SD from all mice in all experiments. *P < .05. (D) HMC-1.1 cells (top, left panel), HMC-1.2 cells (top, right panel), MCPV-1.1 cells (middle, left panel), MCPV-1.4 cells (middle, right panel), and C2 cells (bottom panel) were incubated in control medium or in various concentrations of brentuximab-vedotin (2.5-10 µg/mL) at 37°C for 96 hours. Then, cell cycle distribution was analyzed by flow cytometry. Results show relative cell numbers and represent the mean ± SD from 3 independent experiments. *P < .05.

Close modal

Brentuximab-vedotin induces cell cycle arrest in CD30+ neoplastic MCs

Brentuximab-vedotin produced a G2/M cell cycle arrest in the CD30+ cell lines MCPV-1.1 and C2 (Figure 3D). At high concentrations, drug effects on cell cycle progression were also seen in HMC-1.1 cells (low CD30 expresser). By contrast, brentuximab-vedotin did not induce a cell cycle arrest in the CD30 cell lines HMC-1.2 and MCPV-1.4 (Figure 3D).

Brentuximab-vedotin induces apoptosis in CD30+ neoplastic MCs

To investigate the mechanism of action of brentuximab-vedotin, we examined drug-exposed cells for signs of apoptosis by staining for Annexin V/PI and active caspase-3. In these experiments, brentuximab-vedotin produced dose-dependent apoptosis in MCPV-1.1 cells and C2 cells, and, less effectively, in HMC-1.1 cells (Figure 4A). By contrast, no significant increase in the number of apoptotic cells was seen in drug-exposed HMC-1.2 and MCPV-1.4 cells (Figure 4A). Next, we examined the effects of brentuximab-vedotin on primary CD30+ and CD30 neoplastic MCs. As shown in Figure 4B, brentuximab-vedotin induced dose-dependent apoptosis in CD30+ neoplastic MCs in all patients tested, whereas CD30 MCs did not respond to brentuximab-vedotin.

Figure 4

Brentuximab-vedotin induces apoptosis in neoplastic MCs. (A) HMC-1 cells, MCPV-1.1 cells, MCPV-1.4 cells, and C2 cells were incubated in control medium or in medium containing brentuximab-vedotin (2.5-10 µg/mL) at 37°C for 96 hours. Cells were then stained for Annexin V and PI (left panel) or active caspase-3 (right panel) by flow cytometry. Apoptosis was evaluated in CD30+ MCPV-1.1 cells (black bars), CD30+ C2 cells (light gray bars), CD30+/− HMC-1.1 cells (gray bars), CD30 HMC-1.2 cells (open bars), and CD30 MCPV-1.4 cells (dark gray bars). Results are expressed as percentage of positive cells and represent the mean ± SD from 3 independent experiments. *P < .05. (B) Primary BM cells obtained from 3 patients with CD30+ SM (ASM, n = 2; MCL, n = 1) and 3 patients with CD30 SM (ISM-AHNMD, n = 2; MCL, n = 1) were incubated in control medium or brentuximab-vedotin (2.5-10 µg/mL) at 37°C for 96 hours. (Left panel) Cells were stained with a mAb against CD117 for MC detection, and for Annexin V. (Right panel) Cells were stained with a mAb against CD117 and a mAb against active caspase-3. Apoptosis was analyzed in CD30+ MCs (black bars) and in CD30 MCs (gray bars). Results are expressed as percentage of DAPI+/KIT+ cells (left panel) or as the percentage of KIT+ cells (right panel) and represent the mean ± SD from 3 independent experiments in each group of patients. *P < .05 compared with control.

Figure 4

Brentuximab-vedotin induces apoptosis in neoplastic MCs. (A) HMC-1 cells, MCPV-1.1 cells, MCPV-1.4 cells, and C2 cells were incubated in control medium or in medium containing brentuximab-vedotin (2.5-10 µg/mL) at 37°C for 96 hours. Cells were then stained for Annexin V and PI (left panel) or active caspase-3 (right panel) by flow cytometry. Apoptosis was evaluated in CD30+ MCPV-1.1 cells (black bars), CD30+ C2 cells (light gray bars), CD30+/− HMC-1.1 cells (gray bars), CD30 HMC-1.2 cells (open bars), and CD30 MCPV-1.4 cells (dark gray bars). Results are expressed as percentage of positive cells and represent the mean ± SD from 3 independent experiments. *P < .05. (B) Primary BM cells obtained from 3 patients with CD30+ SM (ASM, n = 2; MCL, n = 1) and 3 patients with CD30 SM (ISM-AHNMD, n = 2; MCL, n = 1) were incubated in control medium or brentuximab-vedotin (2.5-10 µg/mL) at 37°C for 96 hours. (Left panel) Cells were stained with a mAb against CD117 for MC detection, and for Annexin V. (Right panel) Cells were stained with a mAb against CD117 and a mAb against active caspase-3. Apoptosis was analyzed in CD30+ MCs (black bars) and in CD30 MCs (gray bars). Results are expressed as percentage of DAPI+/KIT+ cells (left panel) or as the percentage of KIT+ cells (right panel) and represent the mean ± SD from 3 independent experiments in each group of patients. *P < .05 compared with control.

Close modal

Brentuximab-vedotin cooperates with PKC412 in inducing growth inhibition

As visible in Figure 5A, brentuximab-vedotin and PKC412 were found to synergize in producing growth inhibition in all cell lines tested, including HMC-1.1, HMC-1.2, MCPV-1.1, and MCPV-1.4. In addition, we found that brentuximab-vedotin and PKC412 produce a cooperative effect on MCPV-1.1 engraftment in NSG mice. In particular, in 1 experiment, brentuximab-vedotin (100 µg/mL) alone did not suppress engraftment of more resistant MCPV-1.1 cells, but engraftment was suppressed effectively when cells were preincubated with the drug combination brentuximab-vedotin + PKC412 (Figure 5B).

Figure 5

Effect of the drug combinations brentuximab-vedotin + PKC412 on proliferation of neoplastic MCs. (A) HMC-1.1 cells, HMC-1.2 cells, MCPV-1.1 cells, MCPV-1.4 cells, and C2 cells were incubated in control medium, brentuximab-vedotin (0.1-35 µg/mL, light gray symbols), PKC412 (1-350 nM, dark gray symbols), or a combination of both drugs at fixed ratio of drug concentration (black symbols) at 37°C for 96 hours. After incubation, 3H-thymidine uptake was measured. Results are expressed as percentage of control and show 1 typical experiment for each cell line. Almost identical results were obtained in at least 1 independent experiment in each cell line using the same drug concentrations and drug combination. (B) MCPV-1.1 cells were incubated in control medium (Co), brentuximab-vedotin (100 µg/mL), PKC412 (2 µM), or a combination of both drugs (same concentrations) at 37°C for 1 hour. Then, cells were washed and injected into the tail vein of NSG mice (3 × 106 cells per mouse; 4 mice per group). After 4 weeks, mice were sacrificed and MCPV-1.1 repopulation was measured by determining the percentage of CD45+/CD117+ cells in mouse BM samples by flow cytometry. Results represent engraftment as percentage of control. *P < .05.

Figure 5

Effect of the drug combinations brentuximab-vedotin + PKC412 on proliferation of neoplastic MCs. (A) HMC-1.1 cells, HMC-1.2 cells, MCPV-1.1 cells, MCPV-1.4 cells, and C2 cells were incubated in control medium, brentuximab-vedotin (0.1-35 µg/mL, light gray symbols), PKC412 (1-350 nM, dark gray symbols), or a combination of both drugs at fixed ratio of drug concentration (black symbols) at 37°C for 96 hours. After incubation, 3H-thymidine uptake was measured. Results are expressed as percentage of control and show 1 typical experiment for each cell line. Almost identical results were obtained in at least 1 independent experiment in each cell line using the same drug concentrations and drug combination. (B) MCPV-1.1 cells were incubated in control medium (Co), brentuximab-vedotin (100 µg/mL), PKC412 (2 µM), or a combination of both drugs (same concentrations) at 37°C for 1 hour. Then, cells were washed and injected into the tail vein of NSG mice (3 × 106 cells per mouse; 4 mice per group). After 4 weeks, mice were sacrificed and MCPV-1.1 repopulation was measured by determining the percentage of CD45+/CD117+ cells in mouse BM samples by flow cytometry. Results represent engraftment as percentage of control. *P < .05.

Close modal

Brentuximab-vedotin inhibits IgE-dependent HR in MCs and BAs

Patients with advanced SM not only suffer from the consequences of MC invasion in various organs but also from symptoms caused by mediators once these are released from neoplastic MCs after MC activation. Therefore, we were also interested to learn whether brentuximab-vedotin modulates histamine secretion in MCs. Over the dose range examined (0.1-10 µg/mL), brentuximab-vedotin did not induce HR from CD30+ MCs, CD30 MCs, or CD30 blood BAs (not shown). Rather, brentuximab-vedotin was found to inhibit anti-IgE-induced HR from normal BAs in a dose-dependent manner (Figure 6A). Furthermore, brentuximab-vedotin also suppressed anti-IgE-induced release of histamine in CD30+ MCs in patients with advanced SM, whereas no effects of brentuximab-vedotin on HR were seen in CD30 MCs (Figure 6B). Moreover, no substantial effects of brentuximab-vedotin on IgE-mediated upregulation of CD63 or CD203c on BAs were demonstrable (Figure 6C). Correspondingly, brentuximab-vedotin also failed to modulate the expression of CD63 and CD203c on HMC-1 cells and MCPV-1.1 cells (not shown).

Figure 6

Effect of brentuximab-vedotin on IgE-dependent HR and activation in human BAs and MCs. (A-B) BAs obtained from healthy donors (n = 3) (A) and CD30+ or CD30 MCs from patients with mastocytosis (ASM, n = 2; MCL, n = 3; SM-AHNMD, n = 1) (B) were preincubated in control medium (Co) or in various concentrations of brentuximab-vedotin as indicated at 37°C for 30 minutes. Afterward, cells were exposed to anti-IgE (1 µg/mL) at 37°C for 30 minutes. After centrifugation, histamine concentrations were determined in supernatants and cell lysates. Histamine release is expressed as percentage of total histamine. Results represent the mean ± SD from 1 representative experiment (A; left panel) and represent the mean ± SD from 3 normal donors (A, right panel) and from 3 patients with mastocytosis in each panel (B). *P < .05. (C) BAs in whole-blood samples (n = 4) were preincubated in control medium (Co) or in medium containing various concentrations of brentuximab-vedotin (0.1-10 µg/mL) at 37°C for 30 minutes. Then, cells were exposed to anti-IgE antibody (1 µg/mL) for another 15 minutes (37°C). Thereafter, cells were stained with mAb directed against CD63 (left panel) or CD203c (right panel), and analyzed by multicolor flow cytometry as described in the “Material and methods.” BAs were defined as CD203c+ cells in all samples. Anti-IgE-induced upregulation of CD antigens was calculated from mean fluorescence intensities (MFIs) obtained with stimulated (MFIstim) and unstimulated (MFIcontrol) cells, and was expressed as SI (MFIstim: MFIcontrol). Results show SI values and represent the mean ± SD from 4 donors.

Figure 6

Effect of brentuximab-vedotin on IgE-dependent HR and activation in human BAs and MCs. (A-B) BAs obtained from healthy donors (n = 3) (A) and CD30+ or CD30 MCs from patients with mastocytosis (ASM, n = 2; MCL, n = 3; SM-AHNMD, n = 1) (B) were preincubated in control medium (Co) or in various concentrations of brentuximab-vedotin as indicated at 37°C for 30 minutes. Afterward, cells were exposed to anti-IgE (1 µg/mL) at 37°C for 30 minutes. After centrifugation, histamine concentrations were determined in supernatants and cell lysates. Histamine release is expressed as percentage of total histamine. Results represent the mean ± SD from 1 representative experiment (A; left panel) and represent the mean ± SD from 3 normal donors (A, right panel) and from 3 patients with mastocytosis in each panel (B). *P < .05. (C) BAs in whole-blood samples (n = 4) were preincubated in control medium (Co) or in medium containing various concentrations of brentuximab-vedotin (0.1-10 µg/mL) at 37°C for 30 minutes. Then, cells were exposed to anti-IgE antibody (1 µg/mL) for another 15 minutes (37°C). Thereafter, cells were stained with mAb directed against CD63 (left panel) or CD203c (right panel), and analyzed by multicolor flow cytometry as described in the “Material and methods.” BAs were defined as CD203c+ cells in all samples. Anti-IgE-induced upregulation of CD antigens was calculated from mean fluorescence intensities (MFIs) obtained with stimulated (MFIstim) and unstimulated (MFIcontrol) cells, and was expressed as SI (MFIstim: MFIcontrol). Results show SI values and represent the mean ± SD from 4 donors.

Close modal

In advanced SM, the malignant expansion and accumulation of neoplastic MCs in various organ systems leads to organ damage.1-6,12-16  For these patients, no effective therapy is available and the prognosis is poor. However, during the past few years, a number of potentially useful drug targets have been identified in neoplastic MCs.6,18,31,35-37,39  One of these potential targets appears to be the Ki-1 antigen, CD30. In the current study, we provide evidence that CD30 is expressed on the surface of MCs in advanced SM and that the CD30-targeting antibody-conjugate brentuximab-vedotin produces growth inhibition and apoptosis in neoplastic MCs. Moreover, our data show that brentuximab-vedotin and PKC412 exert synergistic growth-inhibitory effects on neoplastic MCs.

Recent data have shown that CD30 is expressed in the cytoplasm and on the surface of neoplastic MCs in SM.35-37,43-47  In an initial report, Sotlar et al described that CD30 is commonly and strongly expressed in the cytoplasm of neoplastic MCs in advanced SM, whereas in most patients with ISM, neoplastic MCs expressed only low amounts or did not exhibit cytoplasmic CD30.35  In the current study, we were able to confirm that CD30 is expressed in the cytoplasm of neoplastic MCs in advanced SM in most patients. In addition, our data show that in most patients with advanced SM, neoplastic MCs express cell surface CD30, which is important in the context of new treatment concepts using CD30-targeted therapy. Moreover, we found a rough correlation between surface expression of CD30 and a more advanced stage of the disease and also between expression of cytoplasmic CD30 and surface CD30 expression. However, these correlations were not significant, and in some patients with ASM or MCL, MCs did not exhibit CD30 on their cell surface. Moreover, we found that in a few patients with ISM, MCs express substantial amounts of CD30 on their cell surface. In addition, we were able to show that neoplastic MCs express substantial amounts of CD30 mRNA in our qPCR experiments, regardless of the variant of SM. Overall, these data are in line with the data published by Morgado et al37  and may have clinical implications. In fact, not all patients with advanced SM may benefit from CD30-targeting antibody treatment because in some of these patients, neoplastic MCs may not express surface CD30. In other words, our data are in favor of testing for CD30 surface expression on neoplastic MCs by flow cytometry before treatment with brentuximab-vedotin is considered.

Several different mechanisms may contribute to the variable expression of CD30 on neoplastic MCs in advanced SM. We therefore explored signaling pathways potentially contributing to CD30 expression. In these experiments, we were able to show that MEK-targeting drugs induce a significant decrease in expression of CD30 in neoplastic MCs. By contrast, inhibitors directed against KIT, PI3K, mTOR, or STAT5 showed only weak or no effects. These data suggest that expression and release of CD30 in neoplastic MCs is regulated by an RAS-MEK–dependent pathway. In this regard, it is noteworthy that RAS-activating mutations and other lesions potentially triggering the RAS-MEK pathway have been described in neoplastic MCs in patients with advanced SM.48,49 

In a next step, we explored whether sCD30 is detectable in the serum of our patients with advanced SM. Indeed, we found increased levels of sCD30 in patients with SM compared with healthy controls. Increased sCD30 levels were found in all categories of SM, but not in patients with CM. Moreover, the median sCD30 level was higher in patients with advanced SM compared with ISM. Collectively, these data suggest that neoplastic MCs actively secrete CD30, especially in advanced SM. However, we were unable to show a correlation between sCD30 levels and serum tryptase levels in our patients.

The CD30-targeting antibody-drug conjugate brentuximab-vedotin reportedly inhibits the growth of CD30+ lymphoma cells.50-52  In the current study, we were able to show that brentuximab-vedotin suppresses the growth of primary neoplastic MCs as well as proliferation of CD30+ MC lines, including HMC-1.1 and MCPV-1.1 cells, and the CD30+ canine mastocytoma cell line C2. The concentrations of brentuximab-vedotin required to inhibit proliferation in primary neoplastic MCs and in the CD30+ cell lines correspond well with the drug concentrations that can be reached in patients treated with this drug.53  By contrast, the CD30 cell lines examined showed only a weak response to brentuximab-vedotin or did not respond to this drug. These data show that the antineoplastic effects of brentuximab-vedotin are largely dependent on surface expression of CD30. Corresponding data have been published for malignant lymphomas.54-56  Finally, we confirmed the growth-inhibitory effects of brentuximab-vedotin in an in vivo xenotransplantation assay using NSG mice and CD30+ MCPV-1.1 cells.

We next were interested in the molecular mechanism contributing to the antineoplastic actions of brentuximab-vedotin in MCs. In these experiments, we found that brentuximab-vedotin induces a G2/M cell cycle arrest as well as apoptosis in neoplastic MCs. Again, clear effects of brentuximab-vedotin were only seen in MCs expressing surface CD30, whereas in neoplastic MCs lacking surface CD30, no significant effects of brentuximab-vedotin were demonstrable. The apoptosis-inducing effects of brentuximab-vedotin on MCs were confirmed by staining for Annexin V/PI as well as staining for active caspase-3.

Most patients with ASM or MCL show clinically meaningful and sometimes even complete responses to midostaurin, also known as PKC412.30,57,58  However, responses are usually short-lived and often followed by a relapse.30,57,58  Therefore, research is currently seeking novel potent targeted drugs that can elicit synergistic growth-inhibitory effects when combined with PKC412. In the present study, we found that brentuximab-vedotin and PKC412 synergize with each other in inducing growth inhibition in CD30+ MCPV-1.1 cells. Based on these data it seems tempting to propose a clinical trial exploring antineoplastic effects of the drug combination PKC412 + brentuximab-vedotin in advanced SM.

Patients with SM often suffer from mediator-related symptoms. In these patients, MCs are not only increased in number but are also activated. In many cases, mediator release is triggered by IgE-dependent mechanisms, and the resulting symptoms represent a major clinical challenge.1-6  We were therefore interested to learn whether brentuximab-vedotin modulates histamine secretion from BAs or MCs. In initial safety-validation experiments, we were able to show that brentuximab-vedotin does not induce or promote HR from BAs or MCs, which is relevant clinically as it predicts that the drug will not induce anaphylactic reactions in vivo. Moreover, we found that brentuximab-vedotin counteracts IgE-dependent secretion of histamine in BAs and MCs. These data suggest that brentuximab-vedotin may exert beneficial effects on mediator-related symptoms in patients with SM. In this regard, it is noteworthy that clinical trials using brentuximab-vedotin in advanced SM have recently been initiated.

In summary, our data show that neoplastic MCs often express cell surface CD30 in advanced SM, and that the CD30-targeting antibody brentuximab-vedotin exerts strong antineoplastic effects on surface CD30+ MCs in these patients. In addition, our data show that brentuximab-vedotin synergizes with PKC412 in producing growth inhibition in neoplastic MCs. Whether these effects are clinically relevant and can be demonstrated in vivo in patients with ASM and MCL remains to be determined in clinical trials.

The online version of this article contains a data supplement.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

The authors thank Tina Bernthaler (University of Veterinary Medicine, Vienna, Austria) for excellent technical assistance.

This work was supported by the Austrian Science Fund (FWF): P 21173-B13, F 4611-B19, F 4704-B20, and P 25937-B13.

Contribution: K. Blatt performed key laboratory experiments (proliferation and apoptosis assays, flow cytometry, and cell activation experiments) and wrote parts of the manuscript; S.C.-R. performed ICC and IHC staining; G.E. performed flow cytometry experiments; G.S. performed cell activation and histamine measurements; G.H. and M.M. contributed molecular studies and a vital cell line model (MCPV-1); M.S. and S.K. performed ELISA measurements; E.H., T.R., and M.W. provided mouse studies and a vital cell line model (C2); K. Bauer performed immunostainings of MCs; D.S. performed HR experiments; K.S., J.S., A.R., and H.-P.H. contributed patient material and immunostaining experiments; and P.V. contributed the study design and wrote the manuscript.

Conflict-of-interest disclosure: P.V., A.R., and H.-P.H. are consultants in a global Novartis trial. P.V. received a research grant from Novartis. The remaining authors declare no competing financial interests.

Sabine Cerny-Reiterer died before submission of this manuscript.

Correspondence: Peter Valent, Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; e-mail: peter.valent@meduniwien.ac.at.

1
Escribano
 
L
Akin
 
C
Castells
 
M
Orfao
 
A
Metcalfe
 
DD
Mastocytosis: current concepts in diagnosis and treatment.
Ann Hematol
2002
, vol. 
81
 
12
(pg. 
677
-
690
)
2
Valent
 
P
Akin
 
C
Sperr
 
WR
, et al. 
Diagnosis and treatment of systemic mastocytosis: state of the art.
Br J Haematol
2003
, vol. 
122
 
5
(pg. 
695
-
717
)
3
Akin
 
C
Metcalfe
 
DD
Systemic mastocytosis.
Annu Rev Med
2004
, vol. 
55
 (pg. 
419
-
432
)
4
Valent
 
P
Sperr
 
WR
Schwartz
 
LB
Horny
 
HP
Diagnosis and classification of mast cell proliferative disorders: delineation from immunologic diseases and non-mast cell hematopoietic neoplasms.
J Allergy Clin Immunol
2004
, vol. 
114
 
1
(pg. 
3
-
11
)
5
Metcalfe
 
DD
Mast cells and mastocytosis.
Blood
2008
, vol. 
112
 
4
(pg. 
946
-
956
)
6
Arock
 
M
Valent
 
P
Pathogenesis, classification and treatment of mastocytosis: state of the art in 2010 and future perspectives.
Expert Rev Hematol
2010
, vol. 
3
 
4
(pg. 
497
-
516
)
7
Valent
 
P
Horny
 
HP
Escribano
 
L
, et al. 
Diagnostic criteria and classification of mastocytosis: a consensus proposal.
Leuk Res
2001
, vol. 
25
 
7
(pg. 
603
-
625
)
8
Valent
 
P
Horny
 
HP
Li
 
CY
, et al. 
 
Mastocytosis (mast cell disease). Pathology and genetics. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Vol 1. Lyon, France: IARC Press; 2001:291-302
9
Valent
 
P
Akin
 
C
Escribano
 
L
, et al. 
Standards and standardization in mastocytosis: consensus statements on diagnostics, treatment recommendations and response criteria.
Eur J Clin Invest
2007
, vol. 
37
 
6
(pg. 
435
-
453
)
10
Horny
 
HP
Akin
 
C
Metclafe
 
DD
, et al. 
 
Mastocytosis (mast cell disease). Pathology and genetics. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Vol 2. Lyon, France: IARC Press; 2008:54-63
11
Sperr
 
WR
Escribano
 
L
Jordan
 
JH
, et al. 
Morphologic properties of neoplastic mast cells: delineation of stages of maturation and implication for cytological grading of mastocytosis.
Leuk Res
2001
, vol. 
25
 
7
(pg. 
529
-
536
)
12
Valent
 
P
Akin
 
C
Sperr
 
WR
, et al. 
Aggressive systemic mastocytosis and related mast cell disorders: current treatment options and proposed response criteria.
Leuk Res
2003
, vol. 
27
 
7
(pg. 
635
-
641
)
13
Lim
 
KH
Tefferi
 
A
Lasho
 
TL
, et al. 
Systemic mastocytosis in 342 consecutive adults: survival studies and prognostic factors.
Blood
2009
, vol. 
113
 
23
(pg. 
5727
-
5736
)
14
Pardanani
 
A
Lim
 
KH
Lasho
 
TL
, et al. 
Prognostically relevant breakdown of 123 patients with systemic mastocytosis associated with other myeloid malignancies.
Blood
2009
, vol. 
114
 
18
(pg. 
3769
-
3772
)
15
Travis
 
WD
Li
 
CY
Hoagland
 
HC
Travis
 
LB
Banks
 
PM
Mast cell leukemia: report of a case and review of the literature.
Mayo Clin Proc
1986
, vol. 
61
 
12
(pg. 
957
-
966
)
16
Georgin-Lavialle
 
S
Lhermitte
 
L
Dubreuil
 
P
Chandesris
 
MO
Hermine
 
O
Damaj
 
G
Mast cell leukemia.
Blood
2013
, vol. 
121
 
8
(pg. 
1285
-
1295
)
17
Tefferi
 
A
Pardanani
 
A
Clinical, genetic, and therapeutic insights into systemic mast cell disease.
Curr Opin Hematol
2004
, vol. 
11
 
1
(pg. 
58
-
64
)
18
Valent
 
P
Ghannadan
 
M
Akin
 
C
, et al. 
On the way to targeted therapy of mast cell neoplasms: identification of molecular targets in neoplastic mast cells and evaluation of arising treatment concepts.
Eur J Clin Invest
2004
, vol. 
34
 
suppl 2
(pg. 
41
-
52
)
19
Gleixner
 
KV
Mayerhofer
 
M
Cerny-Reiterer
 
S
, et al. 
KIT-D816V-independent oncogenic signaling in neoplastic cells in systemic mastocytosis: role of Lyn and Btk activation and disruption by dasatinib and bosutinib.
Blood
2011
, vol. 
118
 
7
(pg. 
1885
-
1898
)
20
Valent
 
P
Mastocytosis: a paradigmatic example of a rare disease with complex biology and pathology.
Am J Cancer Res
2013
, vol. 
3
 
2
(pg. 
159
-
172
)
21
Nagata
 
H
Worobec
 
AS
Oh
 
CK
, et al. 
Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder.
Proc Natl Acad Sci USA
1995
, vol. 
92
 
23
(pg. 
10560
-
10564
)
22
Longley
 
BJ
Tyrrell
 
L
Lu
 
SZ
, et al. 
Somatic c-KIT activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm.
Nat Genet
1996
, vol. 
12
 
3
(pg. 
312
-
314
)
23
Fritsche-Polanz
 
R
Jordan
 
JH
Feix
 
A
, et al. 
Mutation analysis of C-KIT in patients with myelodysplastic syndromes without mastocytosis and cases of systemic mastocytosis.
Br J Haematol
2001
, vol. 
113
 
2
(pg. 
357
-
364
)
24
Féger
 
F
Ribadeau Dumas
 
A
Leriche
 
L
Valent
 
P
Arock
 
M
Kit and c-kit mutations in mastocytosis: a short overview with special reference to novel molecular and diagnostic concepts.
Int Arch Allergy Immunol
2002
, vol. 
127
 
2
(pg. 
110
-
114
)
25
Furitsu
 
T
Tsujimura
 
T
Tono
 
T
, et al. 
Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product.
J Clin Invest
1993
, vol. 
92
 
4
(pg. 
1736
-
1744
)
26
Growney
 
JD
Clark
 
JJ
Adelsperger
 
J
, et al. 
Activation mutations of human c-KIT resistant to imatinib mesylate are sensitive to the tyrosine kinase inhibitor PKC412.
Blood
2005
, vol. 
106
 
2
(pg. 
721
-
724
)
27
Gleixner
 
KV
Mayerhofer
 
M
Aichberger
 
KJ
, et al. 
PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects.
Blood
2006
, vol. 
107
 
2
(pg. 
752
-
759
)
28
Schittenhelm
 
MM
Shiraga
 
S
Schroeder
 
A
, et al. 
Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies.
Cancer Res
2006
, vol. 
66
 
1
(pg. 
473
-
481
)
29
Shah
 
NP
Lee
 
FY
Luo
 
R
Jiang
 
Y
Donker
 
M
Akin
 
C
Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis.
Blood
2006
, vol. 
108
 
1
(pg. 
286
-
291
)
30
Gotlib
 
J
Berubé
 
C
Growney
 
JD
, et al. 
Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation.
Blood
2005
, vol. 
106
 
8
(pg. 
2865
-
2870
)
31
Ustun
 
C
DeRemer
 
DL
Akin
 
C
Tyrosine kinase inhibitors in the treatment of systemic mastocytosis.
Leuk Res
2011
, vol. 
35
 
9
(pg. 
1143
-
1152
)
32
Gleixner
 
KV
Mayerhofer
 
M
Sonneck
 
K
, et al. 
Synergistic growth-inhibitory effects of two tyrosine kinase inhibitors, dasatinib and PKC412, on neoplastic mast cells expressing the D816V-mutated oncogenic variant of KIT.
Haematologica
2007
, vol. 
92
 
11
(pg. 
1451
-
1459
)
33
Stein
 
H
Mason
 
DY
Gerdes
 
J
, et al. 
The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells.
Blood
1985
, vol. 
66
 
4
(pg. 
848
-
858
)
34
Chiarle
 
R
Podda
 
A
Prolla
 
G
Gong
 
J
Thorbecke
 
GJ
Inghirami
 
G
CD30 in normal and neoplastic cells.
Clin Immunol
1999
, vol. 
90
 
2
(pg. 
157
-
164
)
35
Sotlar
 
K
Cerny-Reiterer
 
S
Petat-Dutter
 
K
, et al. 
Aberrant expression of CD30 in neoplastic mast cells in high-grade mastocytosis.
Mod Pathol
2011
, vol. 
24
 
4
(pg. 
585
-
595
)
36
Valent
 
P
Sotlar
 
K
Horny
 
HP
Aberrant expression of CD30 in aggressive systemic mastocytosis and mast cell leukemia: a differential diagnosis to consider in aggressive hematopoietic CD30-positive neoplasms.
Leuk Lymphoma
2011
, vol. 
52
 
5
(pg. 
740
-
744
)
37
Morgado
 
JM
Perbellini
 
O
Johnson
 
RC
, et al. 
CD30 expression by bone marrow mast cells from different diagnostic variants of systemic mastocytosis.
Histopathology
2013
, vol. 
63
 
6
(pg. 
780
-
787
)
38
Butterfield
 
JH
Weiler
 
D
Dewald
 
G
Gleich
 
GJ
Establishment of an immature mast cell line from a patient with mast cell leukemia.
Leuk Res
1988
, vol. 
12
 
4
(pg. 
345
-
355
)
39
Hoermann
 
G
Blatt
 
K
Greiner
 
G
, et al. 
CD52 is a molecular target in advanced systemic mastocytosis.
FASEB J
2014
, vol. 
28
 
8
(pg. 
3540
-
3551
)
40
DeVinney
 
R
Gold
 
WM
Establishment of two dog mastocytoma cell lines in continuous culture.
Am J Respir Cell Mol Biol
1990
, vol. 
3
 
5
(pg. 
413
-
420
)
41
Herrmann
 
H
Kneidinger
 
M
Cerny-Reiterer
 
S
, et al. 
The Hsp32 inhibitors SMA-ZnPP and PEG-ZnPP exert major growth-inhibitory effects on D34+/CD38+ and CD34+/CD38- AML progenitor cells.
Curr Cancer Drug Targets
2012
, vol. 
12
 
1
(pg. 
51
-
63
)
42
Chou
 
TC
Talalay
 
P
Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors.
Adv Enzyme Regul
1984
, vol. 
22
 (pg. 
27
-
55
)
43
van Anrooij
 
B
Kluin
 
PM
Oude Elberink
 
JN
Kluin-Nelemans
 
JC
CD30 in systemic mastocytosis.
Immunol Allergy Clin North Am
2014
, vol. 
34
 
2
(pg. 
341
-
355
)
44
Horny
 
HP
Sotlar
 
K
Valent
 
P
Mastocytosis: immunophenotypical features of the transformed mast cells are unique among hematopoietic cells.
Immunol Allergy Clin North Am
2014
, vol. 
34
 
2
(pg. 
315
-
321
)
45
Arredondo
 
AR
Jennings
 
CD
Shier
 
L
Sundram
 
U
Gotlib
 
J
George
 
TI
CD30 expression in mastocytosis [abstract].
Lab Invest
2011
, vol. 
91
 
1s
(pg. 
285A
-
286A
Abstract 1215
46
Moonim
 
MT
Kossier
 
T
van Der Walt
 
J
Wilkins
 
B
Harrison
 
CN
Radia
 
DH
CD30/CD123 expression in systemic mastocytosis does not correlate with aggressive disease [abstract].
Blood
2012
, vol. 
120
 
21
 
Abstract 1746
47
Chiu
 
A
Orazi
 
A
Mastocytosis and related disorders.
Semin Diagn Pathol
2012
, vol. 
29
 
1
(pg. 
19
-
30
)
48
Wilson
 
TM
Maric
 
I
Simakova
 
O
, et al. 
Clonal analysis of NRAS activating mutations in KIT-D816V systemic mastocytosis.
Haematologica
2011
, vol. 
96
 
3
(pg. 
459
-
463
)
49
Schwaab
 
J
Schnittger
 
S
Sotlar
 
K
, et al. 
Comprehensive mutational profiling in advanced systemic mastocytosis.
Blood
2013
, vol. 
122
 
14
(pg. 
2460
-
2466
)
50
Newland
 
AM
Li
 
JX
Wasco
 
LE
Aziz
 
MT
Lowe
 
DK
Brentuximab vedotin: a CD30-directed antibody-cytotoxic drug conjugate.
Pharmacotherapy
2013
, vol. 
33
 
1
(pg. 
93
-
104
)
51
Bhatt
 
S
Ashlock
 
BM
Natkunam
 
Y
, et al. 
CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma.
Blood
2013
, vol. 
122
 
7
(pg. 
1233
-
1242
)
52
Okeley
 
NM
Miyamoto
 
JB
Zhang
 
X
, et al. 
Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate.
Clin Cancer Res
2010
, vol. 
16
 
3
(pg. 
888
-
897
)
53
Ogura
 
M
Tobinai
 
K
Hatake
 
K
, et al. 
Phase I / II study of brentuximab vedotin in Japanese patients with relapsed or refractory CD30-positive Hodgkin’s lymphoma or systemic anaplastic large-cell lymphoma.
Cancer Sci
2014
, vol. 
105
 
7
(pg. 
840
-
846
)
54
Ansell
 
SM
Brentuximab vedotin.
Blood
2014
, vol. 
124
 
22
(pg. 
3197
-
3200
)
55
Jacobsen
 
ED
Sharman
 
JP
Oki
 
Y
, et al. 
Brentuximab vedotin demonstrates objective responses in a phase 2 study of relapsed/refractory DLBCL with variable CD30 expression.
Blood
2015
, vol. 
125
 
9
(pg. 
1394
-
1402
)
56
Kumar
 
A
Younes
 
A
Role of CD30 targeting in malignant lymphoma.
Curr Treat Options Oncol
2014
, vol. 
15
 
2
(pg. 
210
-
225
)
57
Gotlib
 
J
Kluin-Nelemans
 
HC
George
 
TI
, et al. 
KIT inhibitor midostaurin in patients with advanced systemic mastocytosis: results of a planned interim analysis of the global CPKC412D2201 trial [abstract].
Blood
2012
, vol. 
120
 
21
 
Abstract 799
58
Gotlib
 
J
Kluin-Nelemans
 
HC
George
 
TI
, et al. 
Durable responses and improved quality of life with midostaurin (PKC412) in advanced systemic mastocytosis (SM): updated stage 1 results of the global D2201 trial [abstract].
Blood
2013
, vol. 
122
 
21
 
Abstract 106
Sign in via your Institution