Key Points
Ivosidenib, venetoclax ± azacitidine either rapidly selects evolved, resistant leukemic clones or eradicates leukemic clones.
Resistant clones express RNA signatures of stemness, branched-chain amino acid metabolism, and menin targets.
Acquired resistance to targeted, non-intensive therapies is common in myeloid malignancies. However, the kinetics of selection, the hematopoietic cell compartments where selection occurs, and the molecular mechanisms underlying selection remain open questions. To address this, we studied the kinetics of clonal and transcriptional responses to ivosidenib + venetoclax ± azacitidine combination therapy across hematopoiesis in 8 patients with IDH1-mutant myeloid malignancy. All 8 patients initially responded to treatment but 6 relapsed while 2 remained in sustained remission for >4 years. We performed combined high-sensitivity single-cell (sc) genotyping and scRNA-seq in index-sorted sequential patient samples. In all patients, clonal selection occurred rapidly, within 1-3 treatment cycles. Clonal selection preceded treatment failure by months to years. Relapse was associated with expansion of either clones harboring newly-detected myeloid driver mutations or pre-existing minor clones that underwent differentiation delay upon treatment exposure. In both cases, clonal selection occurred within immature cell populations previously shown to contain leukemic stem cell (LSC) potential. Different genetic alterations within relapse-associated clones converged onto common upregulated transcriptional programs of stemness, branched-chain amino acid catabolism, and genes sensitive to menin inhibition. Importantly, this relapse-associated transcriptional signature was selected within 3 cycles of therapy. In contrast, in both patients remaining in remission, leukemic clones were rapidly eradicated and replaced by clonal and wild-type hematopoiesis. Overall, in patients treated with ivosidenib combination therapy, rapid clonal selection occurs within the first treatment cycles. In those patients destined to relapse, genetically heterogeneous resistant clones are characterized by common transcriptional programs.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal