• QTL analyses identified >400 gene-metabolite associations in fresh and stored RBCs from 350 diversity outbred mice.

  • Steap3 or ferroptosis-related genes FADS1/2, EPHX2, and LPCAT3 regulate lipid oxidation, PTR in mice, hemolysis, and Hgb increments in human RBCs.

Abstract

Red blood cell (RBC) metabolism regulates hemolysis during aging in vivo and in the blood bank. However, the genetic underpinnings of RBC metabolic heterogeneity and extravascular hemolysis at population scale are incompletely understood. On the basis of the breeding of 8 founder strains with extreme genetic diversity, the Jackson Laboratory diversity outbred population can capture the impact of genetic heterogeneity in like manner to population-based studies. RBCs from 350 outbred mice, either fresh or stored for 7 days, were tested for posttransfusion recovery, as well as metabolomics and lipidomics analyses. Metabolite and lipid quantitative trait loci (QTL) mapped >400 gene-metabolite associations, which we collated into an online interactive portal. Relevant to RBC storage, we identified a QTL hotspot on chromosome 1, mapping on the region coding for the ferrireductase 6-transmembrane epithelial antigen of the prostate 3 (Steap3), a transcriptional target to p53. Steap3 regulated posttransfusion recovery, contributing to a ferroptosis-like process of lipid peroxidation, as validated via genetic manipulation in mice. Translational validation of murine findings in humans, STEAP3 polymorphisms were associated with RBC iron content, lipid peroxidation, and in vitro hemolysis in 13 091 blood donors from the Recipient Epidemiology and Donor Evaluation Study. QTL analyses in humans identified a network of gene products (fatty acid desaturases 1 and 2, epoxide hydrolase 2, lysophosphatidylcholine acetyl-transferase 3, solute carrier family 22 member 16, glucose 6-phosphate dehydrogenase, very long chain fatty acid elongase, and phospholipase A2 group VI) associated with altered levels of oxylipins. These polymorphisms were prevalent in donors of African descent and were linked to allele frequency of hemolysis-linked polymorphisms for Steap3 or p53. These genetic variants were also associated with lower hemoglobin increments in thousands of single-unit transfusion recipients from the vein-to-vein database.

1.
Surendran
P
,
Stewart
ID
,
Au Yeung
VPW
, et al
.
Rare and common genetic determinants of metabolic individuality and their effects on human health
.
Nat Med
.
2022
;
28
(
11
):
2321
-
2332
.
2.
D’Alessandro
A
,
Giardina
B
,
Gevi
F
,
Timperio
AM
,
Zolla
L
.
Clinical metabolomics: the next stage of clinical biochemistry
.
Blood Transfus
.
2012
;
10
(
suppl 2
):
s19
-
s24
.
3.
Bianconi
E
,
Piovesan
A
,
Facchin
F
, et al
.
An estimation of the number of cells in the human body
.
Ann Hum Biol
.
2013
;
40
(
6
):
463
-
471
.
4.
Bordbar
A
,
Jamshidi
N
,
Palsson
BO
.
iAB-RBC-283: a proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states
.
BMC Syst Biol
.
2011
;
5
(
1
):
110
.
5.
D'Alessandro
A
,
Anastasiadi
AT
,
Tzounakas
VL
, et al
.
Red blood cell metabolism in vivo and in vitro
.
Metabolites
.
2023
;
13
(
7
):
793
.
6.
Bryk
AH
,
Wiśniewski
JR
.
Quantitative analysis of human red blood cell proteome
.
J Proteome Res
.
2017
;
16
(
8
):
2752
-
2761
.
7.
Donovan
K
,
Meli
A
,
Cendali
F
, et al
.
Stored blood has compromised oxygen unloading kinetics that can be normalized with rejuvenation and predicted from corpuscular side-scatter
.
Haematologica
.
2022
;
107
(
1
):
298
-
302
.
8.
Nemkov
T
,
Reisz
JA
,
Xia
Y
,
Zimring
JC
,
D'Alessandro
A
.
Red blood cells as an organ? how deep omics characterization of the most abundant cell in the human body highlights other systemic metabolic functions beyond oxygen transport
.
Expert Rev Proteomics
.
2018
;
15
(
11
):
855
-
864
.
9.
Winterbourn
CC
.
Free-radical production and oxidative reactions of hemoglobin
.
Environ Health Perspect
.
1985
;
64
:
321
-
330
.
10.
D'Alessandro
A
,
D'Amici
GM
,
Vaglio
S
,
Zolla
L
.
Time-course investigation of SAGM-stored leukocyte-filtered red bood cell concentrates: from metabolism to proteomics
.
Haematologica
.
2012
;
97
(
1
):
107
-
115
.
11.
Yoshida
T
,
Prudent
M
,
D'Alessandro
A
.
Red blood cell storage lesion: causes and potential clinical consequences
.
Blood Transfus
.
2019
;
17
(
1
):
27
-
52
.
12.
Roussel
C
,
Morel
A
,
Dussiot
M
, et al
.
Rapid clearance of storage-induced microerythrocytes alters transfusion recovery
.
Blood
.
2021
;
137
(
17
):
2285
-
2298
.
13.
Van 't Erve
TJ
,
Wagner
BA
,
Martin
SM
, et al
.
The heritability of hemolysis in stored human red blood cells
.
Transfusion
.
2015
;
55
(
6
):
1178
-
1185
.
14.
Page
GP
,
Kanias
T
,
Guo
YJ
, et al
.
Multiple-ancestry genome-wide association study identifies 27 loci associated with measures of hemolysis following blood storage
.
J Clin Invest
.
2021
;
131
(
13
):
e146077
.
15.
Kanias
T
,
Lanteri
MC
,
Page
GP
, et al
.
Ethnicity, sex, and age are determinants of red blood cell storage and stress hemolysis: results of the REDS-III RBC-Omics study
.
Blood Adv
.
2017
;
1
(
15
):
1132
-
1141
.
16.
Gilson
CR
,
Kraus
TS
,
Hod
EA
, et al
.
A novel mouse model of red blood cell storage and posttransfusion in vivo survival
.
Transfusion
.
2009
;
49
(
8
):
1546
-
1553
.
17.
Zimring
JC
,
Smith
N
,
Stowell
SR
, et al
.
Strain-specific red blood cell storage, metabolism, and eicosanoid generation in a mouse model
.
Transfusion
.
2014
;
54
(
1
):
137
-
148
.
18.
Churchill
GA
,
Gatti
DM
,
Munger
SC
,
Svenson
KL
.
The diversity outbred mouse population
.
Mamm Genome
.
2012
;
23
(
9-10
):
713
-
718
.
19.
French
JE
,
Gatti
DM
,
Morgan
DL
, et al
.
Diversity outbred mice identify population-based exposure thresholds and genetic factors that influence benzene-induced genotoxicity
.
Environ Health Perspect
.
2015
;
123
(
3
):
237
-
245
.
20.
Xiao
H
,
Bozi
LHM
,
Sun
Y
, et al
.
Architecture of the outbred brown fat proteome defines regulators of metabolic physiology
.
Cell
.
2022
;
185
(
24
):
4654
-
4673.e28
.
21.
Morgan
AP
,
Welsh
CE
.
Informatics resources for the collaborative cross and related mouse populations
.
Mamm Genome
.
2015
;
26
(
9-10
):
521
-
539
.
22.
Hay
A
,
Dziewulska
K
,
Gamboni
F
, et al
.
Hypoxic storage of murine red blood cells improves energy metabolism and post-transfusion recoveries
.
Blood Transfus
.
2023
;
21
(
1
):
50
-
61
.
23.
Nemkov
T
,
Yoshida
T
,
Nikulina
M
,
D’Alessandro
A
.
High-throughput metabolomics platform for the rapid data-driven development of novel additive solutions for blood storage
.
Front Physiol
.
2022
;
13
:
833242
.
24.
Nemkov
T
,
Yoshida
T
,
Nikulina
M
,
D'Alessandro
A
.
High-throughput metabolomics platform for the rapid data-driven development of novel additive solutions for blood storage
.
Front Physiol
.
2022
;
13
:
833242
.
25.
Nemkov
T
,
Reisz
JA
,
Gehrke
S
,
Hansen
KC
,
D'Alessandro
A
.
High-throughput metabolomics: isocratic and gradient mass spectrometry-based methods
.
Methods Mol Biol
.
2019
;
1978
:
13
-
26
.
26.
Reisz
JA
,
Zheng
C
,
D'Alessandro
A
,
Nemkov
T
.
Untargeted and semi-targeted lipid analysis of biological samples using mass spectrometry-based metabolomics
.
Methods Mol Biol
.
2019
;
1978
:
121
-
135
.
27.
Broman
KW
,
Gatti
DM
,
Simecek
P
, et al
.
R/qtl2: software for mapping quantitative trait loci with high-dimensional data and multiparent populations
.
Genetics
.
2019
;
211
(
2
):
495
-
502
.
28.
Thomas
T
,
Stefanoni
D
,
Dzieciatkowska
M
, et al
.
Evidence for structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients
.
medRxiv
.
2020
:
2020.06.29.20142703
.
29.
Stephenson
D
,
Nemkov
T
,
Qadri
SM
,
Sheffield
WP
,
D'Alessandro
A
.
Inductively-coupled plasma mass spectrometry-novel insights from an old technology into stressed red blood cell physiology
.
Front Physiol
.
2022
;
13
:
828087
.
30.
Moore
A
,
Busch
MP
,
Dziewulska
K
, et al
.
Genome-wide metabolite quantitative trait loci analysis (mQTL) in red blood cells from volunteer blood donors
.
J Biol Chem
.
2022
;
298
(
12
):
102706
.
31.
Roubinian
NH
,
Reese
SE
,
Qiao
H
, et al
.
Donor genetic and nongenetic factors affecting red blood cell transfusion effectiveness
.
JCI Insight
.
2022
;
7
(
1
):
e152598
.
32.
Roubinian
NH
,
Plimier
C
,
Woo
JP
, et al
.
Effect of donor, component, and recipient characteristics on hemoglobin increments following red blood cell transfusion
.
Blood
.
2019
;
134
(
13
):
1003
-
1013
.
33.
Pang
Z
,
Chong
J
,
Zhou
G
, et al
.
MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights
.
Nucleic Acids Res
.
2021
;
49
(
W1
):
W388
-
W396
.
34.
Howie
HL
,
Hay
AM
,
de Wolski
K
, et al
.
Differences in Steap3 expression are a mechanism of genetic variation of RBC storage and oxidative damage in mice
.
Blood Adv
.
2019
;
3
(
15
):
2272
-
2285
.
35.
Raabe
BM
,
Artwohl
JE
,
Purcell
JE
,
Lovaglio
J
,
Fortman
JD
.
Effects of weekly blood collection in C57BL/6 mice
.
J Am Assoc Lab Anim Sci
.
2011
;
50
(
5
):
680
-
685
.
36.
Kollmus
H
,
Fuchs
H
,
Lengger
C
, et al
.
A comprehensive and comparative phenotypic analysis of the collaborative founder strains identifies new and known phenotypes
.
Mamm Genome
.
2020
;
31
(
1-2
):
30
-
48
.
37.
Svenson
KL
,
Gatti
DM
,
Valdar
W
, et al
.
High-resolution genetic mapping using the mouse diversity outbred population
.
Genetics
.
2012
;
190
(
2
):
437
-
447
.
38.
Kim
A
,
Fung
E
,
Parikh
SG
, et al
.
A mouse model of anemia of inflammation: complex pathogenesis with partial dependence on hepcidin
.
Blood
.
2014
;
123
(
8
):
1129
-
1136
.
39.
Ferraj
A
,
Audano
PA
,
Balachandran
P
, et al
.
Resolution of structural variation in diverse mouse genomes reveals chromatin remodeling due to transposable elements
.
Cell Genom
.
2023
;
3
(
5
):
100291
.
40.
Chick
JM
,
Munger
SC
,
Simecek
P
, et al
.
Defining the consequences of genetic variation on a proteome-wide scale
.
Nature
.
2016
;
534
(
7608
):
500
-
505
.
41.
Vincent
M
,
Gerdes Gyuricza
I
,
Keele
GR
, et al
.
QTLViewer: an interactive webtool for genetic analysis in the collaborative cross and diversity outbred mouse populations
.
G3
.
2022
;
12
(
8
):
jkac146
.
42.
Nemkov
T
,
Stephenson
D
,
Earley
EJ
, et al
.
Biological and genetic determinants of glycolysis: phosphofructokinase isoforms boost energy status of stored red blood cells and transfusion outcomes
.
Cell Metab
.
2024
;
36
(
9
):
1979
-
1997.e13
.
43.
Crouse
WL
,
Kelada
SNP
,
Valdar
W
.
Inferring the allelic series at QTL in multiparental populations
.
Genetics
.
2020
;
216
(
4
):
957
-
983
.
44.
Ohgami
RS
,
Campagna
DR
,
Greer
EL
, et al
.
Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells
.
Nat Genet
.
2005
;
37
(
11
):
1264
-
1269
.
45.
Stockwell
BR
.
Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications
.
Cell
.
2022
;
185
(
14
):
2401
-
2421
.
46.
Yang
WS
,
Stockwell
BR
.
Ferroptosis: death by lipid peroxidation
.
Trends Cell Biol
.
2016
;
26
(
3
):
165
-
176
.
47.
Ren
R
,
Hashimoto
T
,
Mizuno
M
, et al
.
A lipid peroxidation product 9-oxononanoic acid induces phospholipase A2 activity and thromboxane A2 production in human blood
.
J Clin Biochem Nutr
.
2013
;
52
(
3
):
228
-
233
.
48.
Guo
Y
,
Busch
MP
,
Seielstad
M
, et al
.
Development and evaluation of a transfusion medicine genome wide genotyping array
.
Transfusion
.
2019
;
59
(
1
):
101
-
111
.
49.
Nemkov
T
,
Key
A
,
Stephenson
D
, et al
.
Genetic regulation of carnitine metabolism controls lipid damage repair and aging RBC hemolysis in vivo and in vitro
.
Blood
.
2024
;
143
(
24
):
2517
-
2533
.
50.
Backman
JD
,
Li
AH
,
Marcketta
A
, et al
.
Exome sequencing and analysis of 454,787 UK Biobank participants
.
Nature
.
2021
;
599
(
7886
):
628
-
634
.
51.
Lespagnol
A
,
Duflaut
D
,
Beekman
C
, et al
.
Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice
.
Cell Death Differ
.
2008
;
15
(
11
):
1723
-
1733
.
52.
Venkatesh
D
,
O'Brien
NA
,
Zandkarimi
F
, et al
.
MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling
.
Genes Dev
.
2020
;
34
(
7-8
):
526
-
543
.
53.
Blanc
L
,
Papoin
J
,
Debnath
G
, et al
.
Abnormal erythroid maturation leads to microcytic anemia in the TSAP6/Steap3 null mouse model
.
Am J Hematol
.
2015
;
90
(
3
):
235
-
241
.
54.
Le Goff
S
,
Boussaid
I
,
Floquet
C
, et al
.
p53 activation during ribosome biogenesis regulates normal erythroid differentiation
.
Blood
.
2021
;
137
(
1
):
89
-
102
.
55.
Nemkov
T
,
Kingsley
PD
,
Dzieciatkowska
M
, et al
.
Circulating primitive murine erythroblasts undergo complex proteomic and metabolomic changes during terminal maturation
.
Blood Adv
.
2022
;
6
(
10
):
3072
-
3089
.
56.
de Andrade
KC
,
Mirabello
L
,
Stewart
DR
, et al
.
Higher-than-expected population prevalence of potentially pathogenic germline TP53 variants in individuals unselected for cancer history
.
Hum Mutat
.
2017
;
38
(
12
):
1723
-
1730
.
57.
Liu
D
,
Yi
S
,
Zhang
X
, et al
.
Human STEAP3 mutations with no phenotypic red cell changes
.
Blood
.
2016
;
127
(
8
):
1067
-
1071
.
58.
Baugh
EH
,
Ke
H
,
Levine
AJ
,
Bonneau
RA
,
Chan
CS
.
Why are there hotspot mutations in the TP53 gene in human cancers?
.
Cell Death Differ
.
2018
;
25
(
1
):
154
-
160
.
59.
Rivlin
N
,
Brosh
R
,
Oren
M
,
Rotter
V
.
Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis
.
Genes Cancer
.
2011
;
2
(
4
):
466
-
474
.
60.
Pant
V
,
Quintás-Cardama
A
,
Lozano
G
.
The p53 pathway in hematopoiesis: lessons from mouse models, implications for humans
.
Blood
.
2012
;
120
(
26
):
5118
-
5127
.
61.
Nemkov
T
,
Stephenson
D
,
Erickson
C
, et al
.
Regulation of kynurenine metabolism by blood donor genetics and biology impacts red cell hemolysis in vitro and in vivo
.
Blood
.
2024
;
143
(
5
):
456
-
472
.
62.
Howie
HL
,
Hay
AM
,
de Wolski
K
, et al
.
Differences in Steap3 expression are a mechanism of genetic variation of RBC storage and oxidative damage in mice
.
Blood Adv
.
2019
;
3
(
15
):
2272
-
2285
.
63.
Francis
RO
,
D’Alessandro
A
,
Eisenberger
A
, et al
.
Donor glucose-6-phosphate dehydrogenase deficiency decreases blood quality for transfusion
.
J Clin Invest
.
2020
;
130
(
5
):
2270
-
2285
.
64.
D'Alessandro
A
,
Fu
X
,
Kanias
T
, et al
.
Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity
.
Haematologica
.
2021
;
106
(
5
):
1290
-
1302
.
65.
Luzzatto
L
,
Ally
M
,
Notaro
R
.
Glucose-6-phosphate dehydrogenase deficiency
.
Blood
.
2020
;
136
(
11
):
1225
-
1240
.
66.
Lambe
T
,
Simpson
RJ
,
Dawson
S
, et al
.
Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism
.
Blood
.
2009
;
113
(
8
):
1805
-
1808
.
67.
Grandchamp
B
,
Hetet
G
,
Kannengiesser
C
, et al
.
A novel type of congenital hypochromic anemia associated with a nonsense mutation in the STEAP3/TSAP6 gene
.
Blood
.
2011
;
118
(
25
):
6660
-
6666
.
68.
Dreischer
P
,
Duszenko
M
,
Stein
J
,
Wieder
T
.
Eryptosis: programmed death of nucleus-free, iron-filled blood cells
.
Cells
.
2022
;
11
(
3
):
503
.
69.
D'Alessandro
A
,
Zolla
L
.
Biochemistry of red cell aging in vivo and storage lesions
.
.
2013
;
7
:
398
. 396.
70.
Zhang
DL
,
Ghosh
MC
,
Ollivierre
H
,
Li
Y
,
Rouault
TA
.
Ferroportin deficiency in erythroid cells causes serum iron deficiency and promotes hemolysis due to oxidative stress
.
Blood
.
2018
;
132
(
19
):
2078
-
2087
.
71.
Liu
Y
,
Gu
W
.
p53 in ferroptosis regulation: the new weapon for the old guardian
.
Cell Death Differ
.
2022
;
29
(
5
):
895
-
910
.
72.
Yan
Y
,
Liang
Q
,
Xu
Z
, et al
.
Downregulated ferroptosis-related gene STEAP3 as a novel diagnostic and prognostic target for hepatocellular carcinoma and its roles in immune regulation
.
Front Cell Dev Biol
.
2021
;
9
:
743046
.
73.
Ye
CL
,
Du
Y
,
Yu
X
, et al
.
STEAP3 affects ferroptosis and progression of renal cell carcinoma through the p53/xCT pathway
.
Technol Cancer Res Treat
.
2022
;
21
:
15330338221078728
.
74.
Stolwijk
JM
,
Stefely
JA
,
Veling
MT
, et al
.
Red blood cells contain enzymatically active GPx4 whose abundance anticorrelates with hemolysis during blood bank storage
.
Redox Biol
.
2021
;
46
:
102073
.
75.
Ma
J
,
Hu
J
,
Zhao
L
,
Wu
Z
,
Li
R
,
Deng
W
.
Identification of clinical prognostic factors and analysis of ferroptosis-related gene signatures in the bladder cancer immune microenvironment
.
BMC Urol
.
2024
;
24
(
1
):
6
.
76.
Shimada
K
,
Hayano
M
,
Pagano
NC
,
Stockwell
BR
.
Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity
.
Cell Chem Biol
.
2016
;
23
(
2
):
225
-
235
.
77.
Dixon
SJ
,
Winter
GE
,
Musavi
LS
, et al
.
Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death
.
ACS Chem Biol
.
2015
;
10
(
7
):
1604
-
1609
.
78.
Yang
WS
,
SriRamaratnam
R
,
Welsch
ME
, et al
.
Regulation of ferroptotic cancer cell death by GPX4
.
Cell
.
2014
;
156
(
1-2
):
317
-
331
.
79.
Yamane
D
,
Hayashi
Y
,
Matsumoto
M
, et al
.
FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication
.
Cell Chem Biol
.
2022
;
29
(
5
):
799
-
810.e4
.
80.
Lee
JY
,
Nam
M
,
Son
HY
, et al
.
Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer
.
Proc Natl Acad Sci U S A
.
2020
;
117
(
51
):
32433
-
32442
.
81.
Chen
D
,
Chu
B
,
Yang
X
, et al
.
iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4
.
Nat Commun
.
2021
;
12
(
1
):
3644
.
82.
Dixon
SJ
,
Patel
DN
,
Welsch
M
, et al
.
Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis
.
Elife
.
2014
;
3
:
e02523
.
83.
Sato
M
,
Kusumi
R
,
Hamashima
S
, et al
.
The ferroptosis inducer erastin irreversibly inhibits system xc− and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells
.
Sci Rep
.
2018
;
8
(
1
):
968
.
84.
Conrad
M
,
Pratt
DA
.
The chemical basis of ferroptosis
.
Nat Chem Biol
.
2019
;
15
(
12
):
1137
-
1147
.
85.
Valashedi
MR
,
Nikoo
A
,
Najafi-Ghalehlou
N
, et al
.
Pharmacological targeting of ferroptosis in cancer treatment
.
Curr Cancer Drug Targets
.
2022
;
22
(
2
):
108
-
125
.
86.
Kim
CY
,
Johnson
H
,
Peltier
S
, et al
.
Deuterated linoleic acid attenuates the RBC storage lesion in a mouse model of poor RBC storage
.
Front Physiol
.
2022
;
13
:
868578
.
You do not currently have access to this content.
Sign in via your Institution