• Precise engineering of the ETO2::GLIS2 fusion in iPSC reproduces leukemogenesis in a developmentally relevant human cell context.

  • The osteoblastic homeobox DLX3 is essential for ETO2::GLIS2 leukemia initiation from iPSC and imbalanced activities at ETS and GATA motifs.

Abstract

Pediatric acute myeloid leukemia frequently harbors fusion oncogenes associated with poor prognosis, including KMT2A, NUP98, and GLIS2 rearrangements. Although murine models have demonstrated their leukemogenic activities, the steps from a normal human cell to leukemic blasts remain unclear. Here, we precisely reproduced the inversion of chromosome 16 resulting in the ETO2::GLIS2 fusion in human induced pluripotent stem cells (iPSCs). iPSC-derived ETO2::GLIS2-expressing hematopoietic cells showed differentiation alterations in vitro and efficiently induced in vivo development of leukemia that closely phenocopied human acute megakaryoblastic leukemia (AMKL), reflected by flow cytometry and single-cell transcriptomes. Comparison of iPS-derived cells with patient-derived cells revealed altered chromatin accessibility at early and later bona fide leukemia stages, with aberrantly higher accessibility and expression of the osteogenic homeobox factor DLX3 that preceded increased accessibility to ETS factors. DLX3 overexpression in normal CD34+ cells increased accessibility to ETS motifs and reduced accessibility to GATA motifs. A DLX3 transcriptional module was globally enriched in both ETO2::GLIS2 AMKL and some aggressive pediatric osteosarcoma. Importantly, DLX3 knockout abrogated leukemia initiation in this ETO2::GLIS2 iPSC model. Collectively, the characterization of a novel human iPSC-derived AMKL model revealed that hijacking of the osteogenic homeobox transcription factor DLX3 is an essential early step in chromatin changes and leukemogenesis driven by the ETO2::GLIS2 fusion oncogene.

1.
Bolouri
H
,
Farrar
JE
,
Triche
T
, et al
.
The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions
.
Nat Med
.
2018
;
24
(
1
):
103
-
112
.
2.
de Rooij
JDE
,
Branstetter
C
,
Ma
J
, et al
.
Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes
.
Nat Genet
.
2017
;
49
(
3
):
451
-
456
.
3.
Gruber
TA
,
Larson Gedman
A
,
Zhang
J
, et al
.
An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia
.
Cancer Cell
.
2012
;
22
(
5
):
683
-
697
.
4.
Thiollier
C
,
Lopez
CK
,
Gerby
B
, et al
.
Characterization of novel genomic alterations and therapeutic approaches using acute megakaryoblastic leukemia xenograft models
.
J Exp Med
.
2012
;
209
(
11
):
2017
-
2031
.
5.
Masetti
R
,
Pigazzi
M
,
Togni
M
, et al
.
CBFA2T3-GLIS2 fusion transcript is a novel common feature in pediatric, cytogenetically normal AML, not restricted to FAB M7 subtype
.
Blood
.
2013
;
121
(
17
):
3469
-
3472
.
6.
Lopez
CK
,
Noguera
E
,
Stavropoulou
V
, et al
.
Ontogenic changes in hematopoietic hierarchy determine pediatric specificity and disease phenotype in fusion oncogene-driven myeloid leukemia
.
Cancer Discov
.
2019
;
9
(
12
):
1736
-
1753
.
7.
Thirant
C
,
Ignacimouttou
C
,
Lopez
CK
, et al
.
ETO2-GLIS2 hijacks transcriptional complexes to drive cellular identity and self-renewal in pediatric acute megakaryoblastic leukemia
.
Cancer Cell
.
2017
;
31
(
3
):
452
-
465
.
8.
Haas
S
,
Trumpp
A
,
Milsom
MD
.
Causes and consequences of hematopoietic stem cell heterogeneity
.
Cell Stem Cell
.
2018
;
22
(
5
):
627
-
638
.
9.
Laurenti
E
,
Göttgens
B
.
From haematopoietic stem cells to complex differentiation landscapes
.
Nature
.
2018
;
553
(
7689
):
418
-
426
.
10.
Notta
F
,
Zandi
S
,
Takayama
N
, et al
.
Distinct routes of lineage development reshape the human blood hierarchy across ontogeny
.
Science
.
2016
;
351
(
6269
):
aab2116
.
11.
Popescu
D-M
,
Botting
RA
,
Stephenson
E
, et al
.
Decoding human fetal liver haematopoiesis
.
Nature
.
2019
;
574
(
7778
):
365
-
371
.
12.
Jardine
L
,
Webb
S
,
Goh
I
, et al
.
Blood and immune development in human fetal bone marrow and Down syndrome
.
Nature
.
2021
;
598
(
7880
):
327
-
331
.
13.
Stavropoulou
V
,
Kaspar
S
,
Brault
L
, et al
.
MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing EMT-related genes linked to poor outcome
.
Cancer Cell
.
2016
;
30
(
1
):
43
-
58
.
14.
Waraky
A
,
Östlund
A
,
Nilsson
T
, et al
.
Aberrant MNX1 expression associated with t(7;12)(q36;p13) pediatric acute myeloid leukemia induces the disease through altering histone methylation
.
Haematologica
.
2024
;
109
(
3
):
725
-
739
.
15.
Barabé
F
,
Kennedy
JA
,
Hope
KJ
,
Dick
JE
.
Modeling the initiation and progression of human acute leukemia in mice
.
Science
.
2007
;
316
(
5824
):
600
-
604
.
16.
Wagenblast
E
,
Araújo
J
,
Gan
OI
, et al
.
Mapping the cellular origin and early evolution of leukemia in Down syndrome
.
Science
.
2021
;
373
(
6551
):
eabf6202
.
17.
Hansen
M
,
von Lindern
M
,
van den Akker
E
,
Varga
E
.
Human-induced pluripotent stem cell-derived blood products: state of the art and future directions
.
FEBS Lett
.
2019
;
593
(
23
):
3288
-
3303
.
18.
Kumar
A
,
D’Souza
SS
,
Thakur
AS
.
Understanding the journey of human hematopoietic stem cell development
.
Stem Cells Int
.
2019
;
2019
:
2141475
.
19.
Bluteau
O
,
Langlois
T
,
Rivera-Munoz
P
, et al
.
Developmental changes in human megakaryopoiesis
.
J Thromb Haemost
.
2013
;
11
(
9
):
1730
-
1741
.
20.
Lange
L
,
Morgan
M
,
Schambach
A
.
The hemogenic endothelium: a critical source for the generation of PSC-derived hematopoietic stem and progenitor cells
.
Cell Mol Life Sci
.
2021
;
78
(
9
):
4143
-
4160
.
21.
Chao
MP
,
Gentles
AJ
,
Chatterjee
S
, et al
.
Human AML-iPSCs reacquire leukemic properties after differentiation and model clonal variation of disease
.
Cell Stem Cell
.
2017
;
20
(
3
):
329
-
344.e7
.
22.
Kotini
AG
,
Chang
C-J
,
Chow
A
, et al
.
Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia
.
Cell Stem Cell
.
2017
;
20
(
3
):
315
-
328.e7
.
23.
Kotini
AG
,
Carcamo
S
,
Cruz-Rodriguez
N
, et al
.
Patient-derived iPSCs faithfully represent the genetic diversity and cellular architecture of human acute myeloid leukemia
.
Blood Cancer Discov
.
2023
;
4
(
4
):
318
-
335
.
24.
Wang
T
,
Pine
AR
,
Kotini
AG
, et al
.
Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets
.
Cell Stem Cell
.
2021
;
28
(
6
):
1074
-
1089.e7
.
25.
Arkoun
B
,
Robert
E
,
Boudia
F
, et al
.
Stepwise GATA1 and SMC3 mutations alter megakaryocyte differentiation in a Down syndrome leukemia model
.
J Clin Invest
.
2022
;
132
(
14
):
e156290
.
26.
Tijchon
E
,
Yi
G
,
Mandoli
A
, et al
.
The acute myeloid leukemia associated AML1-ETO fusion protein alters the transcriptome and cellular progression in a single-oncogene expressing in vitro induced pluripotent stem cell based granulocyte differentiation model
.
PLoS One
.
2019
;
14
(
12
):
e0226435
.
27.
Heuts
BMH
,
Arza-Apalategi
S
,
Alkema
SG
, et al
.
Inducible MLL-AF9 expression drives an AML program during human pluripotent stem cell-derived hematopoietic differentiation
.
Cells
.
2023
;
12
(
8
):
1195
.
28.
Torres-Ruiz
R
,
Martinez-Lage
M
,
Martin
MC
, et al
.
Efficient recreation of t(11;22) EWSR1-FLI1+ in human stem cells using CRISPR/Cas9
.
Stem Cell Rep
.
2017
;
8
(
5
):
1408
-
1420
.
29.
Ayllón
V
,
Vogel-González
M
,
González-Pozas
F
, et al
.
New hPSC-based human models to study pediatric acute megakaryoblastic leukemia harboring the fusion oncogene RBM15-MKL1
.
Stem Cell Res
.
2017
;
19
:
1
-
5
.
30.
Nilsson
T
,
Waraky
A
,
Östlund
A
, et al
.
An induced pluripotent stem cell t(7;12)(q36;p13) acute myeloid leukemia model shows high expression of MNX1 and a block in differentiation of the erythroid and megakaryocytic lineages
.
Int J Cancer
.
2022
;
151
(
5
):
770
-
782
.
31.
Fortschegger
K
,
Husa
A-M
,
Schinnerl
D
,
Nebral
K
,
Strehl
S
.
Expression of RUNX1-JAK2 in human induced pluripotent stem cell-derived hematopoietic cells activates the JAK-STAT and MYC pathways
.
Int J Mol Sci
.
2021
;
22
(
14
):
7576
.
32.
Bertuccio
SN
,
Boudia
F
,
Cambot
M
, et al
.
The pediatric acute leukemia fusion oncogene ETO2-GLIS2 increases self-renewal and alters differentiation in a human induced pluripotent stem cells-derived model
.
Hemasphere
.
2020
;
4
(
1
):
e319
.
33.
Smith
JL
,
Ries
RE
,
Hylkema
T
, et al
.
Comprehensive transcriptome profiling of cryptic CBFA2T3-GLIS2 fusion-positive AML defines novel therapeutic options: a COG and TARGET pediatric AML study
.
Clin Cancer Res
.
2020
;
26
(
3
):
726
-
737
.
34.
Kaonis
S
,
Smith
JL
,
Katiyar
N
, et al
.
Chromatin profiling of CBFA2T3-GLIS2 AMLs identifies key transcription factor dependencies and BRG1 inhibition as a novel therapeutic strategy
.
bioRxiv
.
Preprint posted online 1 September 2023
.
35.
Trinh
BQ
,
Barengo
N
,
Kim
SB
,
Lee
J-S
,
Zweidler-McKay
PA
,
Naora
H
.
The homeobox gene DLX4 regulates erythro-megakaryocytic differentiation by stimulating IL-1β and NF-κB signaling
.
J Cell Sci
.
2015
;
128
(
16
):
3055
-
3067
.
36.
Hassan
MQ
,
Javed
A
,
Morasso
MI
, et al
.
Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene
.
Mol Cell Biol
.
2004
;
24
(
20
):
9248
-
9261
.
37.
Ghoul-Mazgar
S
,
Hotton
D
,
Lézot
F
, et al
.
Expression pattern of Dlx3 during cell differentiation in mineralized tissues
.
Bone
.
2005
;
37
(
6
):
799
-
809
.
38.
Hassan
MQ
,
Tare
RS
,
Lee
SH
, et al
.
BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network
.
J Biol Chem
.
2006
;
281
(
52
):
40515
-
40526
.
39.
Isaac
J
,
Erthal
J
,
Gordon
J
, et al
.
DLX3 regulates bone mass by targeting genes supporting osteoblast differentiation and mineral homeostasis in vivo
.
Cell Death Differ
.
2014
;
21
(
9
):
1365
-
1376
.
40.
Berlanga
P
,
Pierron
G
,
Lacroix
L
, et al
.
The European MAPPYACTS trial: precision medicine program in pediatric and adolescent patients with recurrent malignancies
.
Cancer Discov
.
2022
;
12
(
5
):
1266
-
1281
.
41.
Fellmann
C
,
Hoffmann
T
,
Sridhar
V
, et al
.
An optimized microRNA backbone for effective single-copy RNAi
.
Cell Rep
.
2013
;
5
(
6
):
1704
-
1713
.
42.
Chagraoui
H
,
Kristiansen
MS
,
Ruiz
JP
, et al
.
SCL/TAL1 cooperates with Polycomb RYBP-PRC1 to suppress alternative lineages in blood-fated cells
.
Nat Commun
.
2018
;
9
(
1
):
5375
.
43.
McNulty
M
,
Crispino
JD
.
Acute megakaryocytic leukemia
.
Cold Spring Harb Perspect Med
.
2020
;
10
(
2
):
a034884
.
44.
Chisholm
KM
,
Smith
J
,
Heerema-McKenney
AE
, et al
.
Pathologic, cytogenetic, and molecular features of acute myeloid leukemia with megakaryocytic differentiation: a report from the Children’s Oncology Group
.
Pediatr Blood Cancer
.
2023
;
70
(
5
):
e30251
.
45.
Wilson
NK
,
Foster
SD
,
Wang
X
, et al
.
Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators
.
Cell Stem Cell
.
2010
;
7
(
4
):
532
-
544
.
46.
Goyama
S
,
Schibler
J
,
Cunningham
L
, et al
.
Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells
.
J Clin Invest
.
2013
;
123
(
9
):
3876
-
3888
.
47.
Subramanian
S
,
Thoms
JAI
,
Huang
Y
, et al
.
Genome-wide transcription factor binding maps reveal cell-specific changes in the regulatory architecture of human HSPC
.
Blood
.
2023
;
142
(
17
):
1448
-
1462
.
48.
Zhou
J
,
Yang
J
,
Guo
H
, et al
.
BP1 overexpression is associated with adverse prognosis in de novo acute myeloid leukemia
.
Leuk Lymphoma
.
2016
;
57
(
4
):
828
-
834
.
49.
Zhou
J-D
,
Zhao
Y-J
,
Leng
J-Y
, et al
.
DNA methylation-mediated differential expression of DLX4 isoforms has opposing roles in leukemogenesis
.
Cell Mol Biol Lett
.
2022
;
27
(
1
):
59
.
50.
Tomida
S
,
Yanagisawa
K
,
Koshikawa
K
, et al
.
Identification of a metastasis signature and the DLX4 homeobox protein as a regulator of metastasis by combined transcriptome approach
.
Oncogene
.
2007
;
26
(
31
):
4600
-
4608
.
51.
Man
Y
,
Fu
SW
,
Schwartz
A
,
Pinzone
JJ
,
Simmens
SJ
,
Berg
PE
.
Expression of BP1, a novel homeobox gene, correlates with breast cancer progression and invasion
.
Breast Cancer Res Treat
.
2005
;
90
(
3
):
241
-
247
.
52.
Hara
F
,
Samuel
S
,
Liu
J
,
Rosen
D
,
Langley
RR
,
Naora
H
.
A homeobox gene related to Drosophila distal-less promotes ovarian tumorigenicity by inducing expression of vascular endothelial growth factor and fibroblast growth factor-2
.
Am J Pathol
.
2007
;
170
(
5
):
1594
-
1606
.
53.
Gröbner
SN
,
Worst
BC
,
Weischenfeldt
J
, et al
.
The landscape of genomic alterations across childhood cancers [published correction appears in Nature. 2018;559(7714):E10]
.
Nature
.
2018
;
555
(
7696
):
321
-
327
.
54.
Nayak
S
,
Jiang
K
,
Hope
E
, et al
.
Chromatin landscape governing murine epidermal differentiation
.
J Invest Dermatol
.
2023
;
143
(
7
):
1220
-
1232.e9
.
55.
Sugimura
R
,
Jha
DK
,
Han
A
, et al
.
Haematopoietic stem and progenitor cells from human pluripotent stem cells
.
Nature
.
2017
;
545
(
7655
):
432
-
438
.
56.
Blanco
MA
,
Sykes
DB
,
Gu
L
, et al
.
Chromatin-state barriers enforce an irreversible mammalian cell fate decision
.
Cell Rep
.
2021
;
37
(
6
):
109967
.
You do not currently have access to this content.
Sign in via your Institution