• Chromothripsis, genomic complexity, gain at 6q27 (MLLT4) and del(16)(p13)/CREBBP are associated with a poor outcome in T-ALL.

  • Gain at 6q27 affecting MLLT4 is a newly-identified recurrent somatic copy number variants observed in 3% of T-ALL.

Abstract

Given the poor outcome of refractory and relapsing T-cell acute lymphoblastic leukemia (T-ALL), identifying prognostic markers is still challenging. Using single nucleotide polymorphism (SNP) array analysis, we provide a comprehensive analysis of genomic imbalances in a cohort of 317 newly diagnosed patients with T-ALL including 135 children and 182 adults with respect to clinical and biological features and outcomes. SNP array results identified at least 1 somatic genomic imbalance in virtually all patients with T-ALL (∼96%). Del(9)(p21) (∼70%) and UPD(9)p21)/CDKN2A/B (∼28%) were the most frequent genomic imbalances. Unexpectedly del(13)(q14)/RB1/DLEU1 (∼14%) was the second most frequent copy number variant followed by del(6)(q15)/CASP8AP2 (∼11%), del(1)(p33)/SIL-TAL1 (∼11%), del(12)(p13)ETV6/CDKN1B (∼9%), del(18)(p11)/PTPN2 (∼9%), del(1)(p36)/RPL22 (∼9%), and del(17)(q11)/NF1/SUZ12 (∼8%). SNP array also revealed distinct profiles of genomic imbalances according to age, immunophenotype, and oncogenetic subgroups. In particular, adult patients with T-ALL demonstrated a significantly higher incidence of del(1)(p36)/RPL22, and del(13)(q14)/RB1/DLEU1, and lower incidence of del(9)(p21) and UPD(9p21)/CDKN2A/B. We determined a threshold of 15 genomic imbalances to stratify patients into high- and low-risk groups of relapse. Survival analysis also revealed the poor outcome, despite the low number of affected cases, conferred by the presence of chromothripsis (n = 6, ∼2%), del(16)(p13)/CREBBP (n = 15, ∼5%) as well as the newly-identified recurrent gain at 6q27 involving MLLT4 (n = 10, ∼3%). Genomic complexity, del(16)(p13)/CREBBP and gain at 6q27 involving MLLT4, maintained their significance in multivariate analysis for survival outcome. Our study thus demonstrated that whole genome analysis of imbalances provides new insights to refine risk stratification in T-ALL. This trial was registered at www.ClinicalTrials.gov as #NCT00222027 and #NCT00327678, and as #FRALLE 2000T trial.

1.
Girardi
T
,
Vicente
C
,
Cools
J
,
De Keersmaecker
K
.
The genetics and molecular biology of T-ALL
.
Blood
.
2017
;
129
(
9
):
1113
-
1123
.
2.
Ferrando
AA
,
Neuberg
DS
,
Staunton
J
, et al
.
Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia
.
Cancer Cell
.
2002
;
1
(
1
):
75
-
87
.
3.
Asnafi
V
,
Beldjord
K
,
Boulanger
E
, et al
.
Analysis of TCR, pT alpha, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment
.
Blood
.
2003
;
101
(
7
):
2693
-
2703
.
4.
Gökbuget
N
,
Stanze
D
,
Beck
J
, et al
.
Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation
.
Blood
.
2012
;
120
(
10
):
2032
-
2041
.
5.
Desjonquères
A
,
Chevallier
P
,
Thomas
X
, et al
.
Acute lymphoblastic leukemia relapsing after first-line pediatric-inspired therapy: a retrospective GRAALL study
.
Blood Cancer J
.
2016
;
6
(
12
):
e504
.
6.
Graux
C
,
Cools
J
,
Michaux
L
,
Vandenberghe
P
,
Hagemeijer
A
.
Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast
.
Leukemia
.
2006
;
20
(
9
):
1496
-
1510
.
7.
Van Vlierberghe
P
,
Pieters
R
,
Beverloo
HB
,
Meijerink
JPP
.
Molecular-genetic insights in paediatric T-cell acute lymphoblastic leukaemia
.
Br J Haematol
.
2008
;
143
(
2
):
153
-
168
.
8.
Mroczek
A
,
Zawitkowska
J
,
Kowalczyk
J
,
Lejman
M
.
Comprehensive overview of gene rearrangements in childhood T-cell acute lymphoblastic leukaemia
.
Int J Mol Sci
.
2021
;
22
(
2
):
808
.
9.
Liu
Y
,
Easton
J
,
Shao
Y
, et al
.
The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia
.
Nat Genet
.
2017
;
49
(
8
):
1211
-
1218
.
10.
Song
J
,
Shao
H
.
SNP array in hematopoietic neoplasms: a review
.
Microarrays (Basel)
.
2015
;
5
(
1
):
1
.
11.
Bond
J
,
Graux
C
,
Lhermitte
L
, et al
.
Early response-based therapy stratification improves survival in adult early thymic precursor acute lymphoblastic leukemia: a group for research on adult acute lymphoblastic leukemia study
.
J Clin Oncol
.
2017
;
35
(
23
):
2683
-
2691
.
12.
Petit
A
,
Trinquand
A
,
Chevret
S
, et al
.
Oncogenetic mutations combined with MRD improve outcome prediction in pediatric T-cell acute lymphoblastic leukemia
.
Blood
.
2018
;
131
(
3
):
289
-
300
.
13.
Schoumans
J
,
Suela
J
,
Hastings
R
, et al
.
Guidelines for genomic array analysis in acquired haematological neoplastic disorders
.
Genes Chromosomes Cancer
.
2016
;
55
(
5
):
480
-
491
.
14.
O’Keefe
C
,
McDevitt
MA
,
Maciejewski
JP
.
Copy neutral loss of heterozygosity: a novel chromosomal lesion in myeloid malignancies
.
Blood
.
2010
;
115
(
14
):
2731
-
2739
.
15.
Tiu
RV
,
Gondek
LP
,
O’Keefe
CL
, et al
.
New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia
.
J Clin Oncol
.
2009
;
27
(
31
):
5219
-
5226
.
16.
Heinrichs
S
,
Li
C
,
Look
AT
.
SNP array analysis in hematologic malignancies: avoiding false discoveries
.
Blood
.
2010
;
115
(
21
):
4157
-
4161
.
17.
Korbel
JO
,
Campbell
PJ
.
Criteria for inference of chromothripsis in cancer genomes
.
Cell
.
2013
;
152
(
6
):
1226
-
1236
.
18.
Haider
Z
,
Landfors
M
,
Golovleva
I
, et al
.
DNA methylation and copy number variation profiling of T-cell lymphoblastic leukemia and lymphoma
.
Blood Cancer J
.
2020
;
10
(
4
):
45
.
19.
Gachet
S
,
El-Chaar
T
,
Avran
D
, et al
.
Deletion 6q drives T-cell leukemia progression by ribosome modulation
.
Cancer Discov
.
2018
;
8
(
12
):
1614
-
1631
.
20.
Remke
M
,
Pfister
S
,
Kox
C
, et al
.
High-resolution genomic profiling of childhood T-ALL reveals frequent copy-number alterations affecting the TGF-β and PI3K-AKT pathways and deletions at 6q15-16.1 as a genomic marker for unfavorable early treatment response
.
Blood
.
2009
;
114
(
5
):
1053
-
1062
.
21.
López-Nieva
P
,
Vaquero
C
,
Fernández-Navarro
P
, et al
.
EPHA7, a new target gene for 6q deletion in T-cell lymphoblastic lymphomas
.
Carcinogenesis
.
2012
;
33
(
2
):
452
-
458
.
22.
Steimlé
T
,
Dourthe
M-E
,
Alcantara
M
, et al
.
Clinico-biological features of T-cell acute lymphoblastic leukemia with fusion proteins
.
Blood Cancer J
.
2022
;
12
(
1
):
14
.
23.
Genescà
E
,
Morgades
M
,
González-Gil
C
, et al
.
Adverse prognostic impact of complex karyotype (≥3 cytogenetic alterations) in adult T-cell acute lymphoblastic leukemia (T-ALL)
.
Leuk Res
.
2021
;
109
:
106612
.
24.
Marks
DI
,
Paietta
EM
,
Moorman
AV
, et al
.
T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993)
.
Blood
.
2009
;
114
(
25
):
5136
-
5145
.
25.
Simonin
M
,
Lhermitte
L
,
Dourthe
M-E
, et al
.
IKZF1 alterations predict poor prognosis in adult and pediatric T-ALL
.
Blood
.
2021
;
137
(
12
):
1690
-
1694
.
26.
Tesio
M
,
Trinquand
A
,
Ballerini
P
, et al
.
Age-related clinical and biological features of PTEN abnormalities in T-cell acute lymphoblastic leukaemia
.
Leukemia
.
2017
;
31
(
12
):
2594
-
2600
.
27.
Simonin
M
,
Andrieu
GP
,
Birsen
R
, et al
.
Prognostic value and oncogenic landscape of TP53 alterations in adult and pediatric T-ALL
.
Blood
.
2023
;
141
(
11
):
1353
-
1358
. blood.2022017755.
28.
Karrman
K
,
Castor
A
,
Behrendtz
M
, et al
.
Deep sequencing and SNP array analyses of pediatric T-cell acute lymphoblastic leukemia reveal NOTCH1 mutations in minor subclones and a high incidence of uniparental isodisomies affecting CDKN2A
.
J Hematol Oncol
.
2015
;
8
:
42
.
29.
Lejman
M
,
Włodarczyk
M
,
Styka
B
, et al
.
Advantages and limitations of SNP array in the molecular characterization of pediatric T-cell acute lymphoblastic leukemia
.
Front Oncol
.
2020
;
10
:
1184
.
30.
Garg
R
,
Wierda
W
,
Ferrajoli
A
, et al
.
The prognostic difference of monoallelic versus biallelic deletion of 13q in chronic lymphocytic leukemia
.
Cancer
.
2012
;
118
(
14
):
3531
-
3537
.
31.
Hosokawa
K
,
Katagiri
T
,
Sugimori
N
, et al
.
Favorable outcome of patients who have 13q deletion: a suggestion for revision of the WHO “MDS-U” designation
.
Haematologica
.
2012
;
97
(
12
):
1845
-
1849
.
32.
Schwab
CJ
,
Chilton
L
,
Morrison
H
, et al
.
Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features
.
Haematologica
.
2013
;
98
(
7
):
1081
-
1088
.
33.
Moorman
AV
,
Barretta
E
,
Butler
ER
, et al
.
Prognostic impact of chromosomal abnormalities and copy number alterations in adult B-cell precursor acute lymphoblastic leukaemia: a UKALL14 study
.
Leukemia
.
2022
;
36
(
3
):
625
-
636
.
34.
Moorman
AV
,
Enshaei
A
,
Schwab
C
, et al
.
A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia
.
Blood
.
2014
;
124
(
9
):
1434
-
1444
.
35.
Bonn
BR
,
Rohde
M
,
Zimmermann
M
, et al
.
Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence
.
Blood
.
2013
;
121
(
16
):
3153
-
3160
.
36.
Meyerson
M
,
Pellman
D
.
Cancer genomes evolve by pulverizing single chromosomes
.
Cell
.
2011
;
144
(
1
):
9
-
10
.
37.
Stephens
PJ
,
Greenman
CD
,
Fu
B
, et al
.
Massive genomic rearrangement acquired in a single catastrophic event during cancer development
.
Cell
.
2011
;
144
(
1
):
27
-
40
.
38.
Cai
H
,
Kumar
N
,
Bagheri
HC
,
von Mering
C
,
Robinson
MD
,
Baudis
M
.
Chromothripsis-like patterns are recurring but heterogeneously distributed features in a survey of 22,347 cancer genome screens
.
BMC Genomics
.
2014
;
15
:
82
.
39.
Forero-Castro
M
,
Robledo
C
,
Benito
R
, et al
.
Genome-wide DNA copy number analysis of acute lymphoblastic leukemia identifies new genetic markers associated with clinical outcome
.
PLoS One
.
2016
;
11
(
2
):
e0148972
.
40.
Arniani
S
,
Pierini
V
,
Pellanera
F
, et al
.
Chromothripsis is a frequent event and underlies typical genetic changes in early T-cell precursor lymphoblastic leukemia in adults
.
Leukemia
.
2022
;
36
(
11
):
2577
-
2585
.
41.
Balducci
E
,
Kaltenbach
S
,
Villarese
P
, et al
.
Optical genome mapping refines cytogenetic diagnostics, prognostic stratification and provides new molecular insights in adult MDS/AML patients
.
Blood Cancer J
.
2022
;
12
(
9
):
126
.
42.
Puiggros
A
,
Ramos-Campoy
S
,
Kamaso
J
, et al
.
Optical genome mapping: a promising new tool to assess genomic complexity in chronic lymphocytic leukemia (CLL)
.
Cancers (Basel)
.
2022
;
14
(
14
):
3376
.
43.
Mandai
K
,
Rikitake
Y
,
Shimono
Y
,
Takai
Y
.
Afadin/AF-6 and canoe: roles in cell adhesion and beyond
.
Prog Mol Biol Transl Sci
.
2013
;
116
:
433
-
454
.
44.
Meyer
C
,
Hofmann
J
,
Burmeister
T
, et al
.
The MLL recombinome of acute leukemias in 2013
.
Leukemia
.
2013
;
27
(
11
):
2165
-
2176
.
45.
Mullighan
CG
,
Zhang
J
,
Kasper
LH
, et al
.
CREBBP mutations in relapsed acute lymphoblastic leukaemia
.
Nature
.
2011
;
471
(
7337
):
235
-
239
.
46.
Li
B
,
Brady
SW
,
Ma
X
, et al
.
Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia
.
Blood
.
2020
;
135
(
1
):
41
-
55
.
47.
Seki
M
,
Kimura
S
,
Isobe
T
, et al
.
Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia
.
Nat Genet
.
2017
;
49
(
8
):
1274
-
1281
.
You do not currently have access to this content.
Sign in via your Institution