• Leukemia cutis is infiltrated by T cells with expression signatures of T-cell exhaustion, in contrast to bone marrow–involved AML.

  • Leukemia skin tropism associates with altered expression of homing molecules and major histocompatibility complex class II downregulation.

Abstract

The mechanisms that lead to extramedullary tropism of acute myeloid leukemia (eAML) remain obscure and no specific therapeutic approaches for this entity exist. Because the long-term survival of eAML is poor, a deeper understanding of the immune microenvironment and leukemia phenotypes underlying this entity is warranted. Here, we performed bulk and single-cell transcriptome profiling of 23 eAML biopsies from 10 patients with isolated extramedullary disease in skin and subcutaneous tissue. Unlike normal healthy skin, we found leukemia cutis to be heavily immune infiltrated; in extramedullary relapse after allogeneic stem cell transplantation, >90% of T/natural killer cells were donor derived. eAML-associated T cells expressed a clear signature of T-cell exhaustion, dissimilar to leukemia-associated immune populations in bone marrow relapse (n = 7) but related to acute and chronic skin inflammation. Furthermore, HLA class II was downregulated in 4 of 7 leukemia cutis specimens, consistent with an immune escape phenotype in eAML. Extramedullary and bone marrow–resident leukemia cells differed with regard to the expression of 8 homing receptor molecules (ICAM1 [encoding CD54], PECAM1 [CD31], ITGA4, ITGA6, ITGAL, ITGB4, ITGA5, and ITGAV). Serial samples obtained from 1 leukemia cutis throughout consecutive immune checkpoint blockade with ipilimumab followed by nivolumab showed a consistently high degree of overlap between local and circulating T-cell receptor sequences, suggesting that only a minority of eAML-associated T cells are leukemia specific. Our analysis reveals eAML to associate with complex changes in leukemia and T-cell gene expression profiles that suggest multiple potential avenues for therapeutic targeting.

1.
Stölzel
F
,
Lüer
T
,
Löck
S
, et al
.
The prevalence of extramedullary acute myeloid leukemia detected by 18FDG-PET/CT: final results from the prospective PETAML trial
.
Haematologica
.
2020
;
105
(
6
):
1552
-
1558
.
2.
Eckardt
JN
,
Stölzel
F
,
Kunadt
D
, et al
.
Molecular profiling and clinical implications of patients with acute myeloid leukemia and extramedullary manifestations
.
J Hematol Oncol
.
2022
;
15
(
1
):
60
.
3.
Kayser
S
,
Sanber
K
,
Marconi
G
, et al
.
Outcome of adult acute myeloid leukemia patients with extramedullary disease and treatment with venetoclax/hypomethylating agents
.
Haematologica
.
2025
;
110
(
2
):
378
-
384
.
4.
Simpson
DR
,
Nevill
TJ
,
Shepherd
JD
, et al
.
High incidence of extramedullary relapse of AML after busulfan/cyclophosphamide conditioning and allogeneic stem cell transplantation
.
Bone Marrow Transpl
.
1998
;
22
(
3
):
259
-
264
.
5.
Davids
MS
,
Kim
HT
,
Bachireddy
P
, et al
.
Ipilimumab for patients with relapse after allogeneic transplantation
.
N Engl J Med
.
2016
;
375
(
2
):
143
-
153
.
6.
Penter
L
,
Zhang
Y
,
Savell
A
, et al
.
Molecular and cellular features of CTLA-4 blockade for relapsed myeloid malignancies after transplantation
.
Blood
.
2021
;
137
(
23
):
3212
-
3217
.
7.
Garcia
JS
,
Flamand
Y
,
Penter
L
, et al
.
Ipilimumab plus decitabine for patients with MDS or AML in posttransplant or transplant-naïve settings
.
Blood
.
2023
;
141
(
15
):
1884
-
1888
.
8.
Daver
N
,
Garcia-Manero
G
,
Basu
S
, et al
.
Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a non-randomized, open-label, phase 2 study
.
Cancer Discov
.
2019
;
9
(
3
):
370
-
383
.
9.
Penter
L
,
Liu
Y
,
Wolff
JO
, et al
.
Mechanisms of response and resistance to combined decitabine and ipilimumab for advanced myeloid disease
.
Blood
.
2023
;
141
(
15
):
1817
-
1830
.
10.
Zhao
Y
,
Bai
X
,
Guo
S
, et al
.
Efficacy and safety of CAR-T therapy targeting CLL1 in patients with extramedullary diseases of acute myeloid leukemia
.
J Transl Med
.
2024
;
22
(
1
):
888
.
11.
Yang
LX
,
Zhang
CT
,
Yang
MY
, et al
.
C1Q labels a highly aggressive macrophage-like leukemia population indicating extramedullary infiltration and relapse
.
Blood
.
2023
;
141
(
7
):
766
-
786
.
12.
Shapiro
RM
,
Kim
HT
,
Terral
WH
, et al
.
Induction of graft-versus-leukemia effect with Treg-depleted DLI plus ipilimumab for myeloid disease relapse after HLA-matched transplant [abstract]
.
Blood
.
2024
;
144
(
suppl 1
):
4833
.
13.
Mitamura
Y
,
Schulz
D
,
Oro
S
, et al
.
Cutaneous and systemic hyperinflammation drives maculopapular drug exanthema in severely ill COVID-19 patients
.
Allergy
.
2022
;
77
(
2
):
595
-
608
.
14.
Mirizio
E
,
Liu
C
,
Yan
Q
, et al
.
Genetic signatures from RNA sequencing of pediatric localized scleroderma skin
.
Front Pediatr
.
2021
;
9
:
669116
.
15.
Patro
R
,
Duggal
G
,
Love
MI
,
Irizarry
RA
,
Kingsford
C
.
Salmon provides fast and bias-aware quantification of transcript expression
.
Nat Methods
.
2017
;
14
(
4
):
417
-
419
.
16.
Song
L
,
Cohen
D
,
Ouyang
Z
,
Cao
Y
,
Hu
X
,
Liu
XS
.
TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data
.
Nat Methods
.
2021
;
18
(
6
):
627
-
630
.
17.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
.
18.
Steen
CB
,
Liu
CL
,
Alizadeh
AA
,
Newman
AM
.
Profiling cell type abundance and expression in bulk tissues with CIBERSORTx
.
Methods Mol Biol
.
2020
;
2117
:
135
-
157
.
19.
Lareau
CA
,
Ludwig
LS
,
Muus
C
, et al
.
Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling
.
Nat Biotechnol
.
2021
;
39
(
4
):
451
-
461
.
20.
Penter
L
,
Cieri
N
,
Maurer
K
, et al
.
Tracking rare single donor and recipient immune and leukemia cells after allogeneic hematopoietic cell transplantation using mitochondrial DNA mutations
.
Blood Cancer Discov
.
2024
;
5
(
6
):
442
-
459
.
21.
Hao
Y
,
Stuart
T
,
Kowalski
MH
, et al
.
Dictionary learning for integrative, multimodal and scalable single-cell analysis
.
Nat Biotechnol
.
2024
;
42
(
2
):
293
-
304
.
22.
Penter
L
,
Gohil
SH
,
Lareau
C
, et al
.
Longitudinal single-cell dynamics of chromatin accessibility and mitochondrial mutations in chronic lymphocytic leukemia mirror disease history
.
Cancer Discov
.
2021
;
11
(
12
):
3048
-
3063
.
23.
Penter
L
,
Gohil
SH
,
Huang
T
, et al
.
Coevolving JAK2V617F+ relapsed AML and donor T cells with PD-1 blockade after stem cell transplantation: an index case
.
Blood Adv
.
2021
;
5
(
22
):
4701
-
4709
.
24.
Penter
L
,
Borji
M
,
Nagler
A
, et al
.
Integrative genotyping of cancer and immune phenotypes by long-read sequencing
.
Nat Commun
.
2024
;
15
(
1
):
32
.
25.
Gayoso
A
,
Lopez
R
,
Xing
G
, et al
.
A Python library for probabilistic analysis of single-cell omics data
.
Nat Biotechnol
.
2022
;
40
(
2
):
163
-
166
.
26.
Strobl
J
,
Pandey
RV
,
Krausgruber
T
, et al
.
Long-term skin-resident memory T cells proliferate in situ and are involved in human graft-versus-host disease
.
Sci Transl Med
.
2020
;
12
(
570
):
eabb7028
.
27.
Harris
AC
,
Kitko
CL
,
Couriel
DR
, et al
.
Extramedullary relapse of acute myeloid leukemia following allogeneic hematopoietic stem cell transplantation: incidence, risk factors and outcomes
.
Haematologica
.
2013
;
98
(
2
):
179
-
184
.
28.
Divito
SJ
,
Aasebø
AT
,
Matos
TR
, et al
.
Peripheral host T cells survive hematopoietic stem cell transplantation and promote graft-versus-host disease
.
J Clin Invest
.
2020
;
130
(
9
):
4624
-
4636
.
29.
Bangert
C
,
Alkon
N
,
Chennareddy
S
, et al
.
Dupilumab-associated head and neck dermatitis shows a pronounced type 22 immune signature mediated by oligoclonally expanded T cells
.
Nat Commun
.
2024
;
15
(
1
):
2839
.
30.
Reynolds
G
,
Vegh
P
,
Fletcher
J
, et al
.
Developmental cell programs are co-opted in inflammatory skin disease
.
Science
.
2021
;
371
(
6527
):
eaba6500
.
31.
Werstein
B
,
Dunlap
J
,
Cascio
MJ
, et al
.
Molecular discordance between myeloid sarcomas and concurrent bone marrows occurs in actionable genes and is associated with worse overall survival
.
J Mol Diagn
.
2020
;
22
(
3
):
338
-
345
.
32.
Greenland
NY
,
Van Ziffle
JA
,
Liu
YC
,
Qi
Z
,
Prakash
S
,
Wang
L
.
Genomic analysis in myeloid sarcoma and comparison with paired acute myeloid leukemia
.
Hum Pathol
.
2021
;
108
:
76
-
83
.
33.
Hupe
HC
,
Wienecke
CP
,
Bartels
S
, et al
.
Cell-free DNA for detection and monitoring of extramedullary AML relapse
.
Hemasphere
.
2025
;
9
(
3
):
e70097
.
34.
Kluk
MJ
,
Lindsley
RC
,
Aster
JC
, et al
.
Validation and implementation of a custom next-generation sequencing clinical assay for hematologic malignancies
.
J Mol Diagn
.
2016
;
18
(
4
):
507
-
515
.
35.
Schnorfeil
FM
,
Lichtenegger
FS
,
Emmerig
K
, et al
.
T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment
.
J Hematol Oncol
.
2015
;
8
:
93
.
36.
Toffalori
C
,
Zito
L
,
Gambacorta
V
, et al
.
Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation
.
Nat Med
.
2019
;
25
(
4
):
603
-
611
.
37.
Oliveira
G
,
Stromhaug
K
,
Klaeger
S
, et al
.
Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma
.
Nature
.
2021
;
596
(
7870
):
119
-
125
.
38.
Strobl
J
,
Gail
LM
,
Krecu
L
, et al
.
Diverse macrophage populations contribute to distinct manifestations of human cutaneous graft-versus-host disease
.
Br J Dermatol
.
2024
;
190
(
3
):
402
-
414
.
39.
Robert
L
,
Tsoi
J
,
Wang
X
, et al
.
CTLA4 blockade broadens the peripheral T-cell receptor repertoire
.
Clin Cancer Res
.
2014
;
20
(
9
):
2424
-
2432
.
40.
Kidman
J
,
Principe
N
,
Watson
M
, et al
.
Characteristics of TCR repertoire associated with successful immune checkpoint therapy responses
.
Front Immunol
.
2020
;
11
:
587014
.
41.
Dunlop
GHM
.
A case of chloroma with pathological report, and some notes descriptive of the disease
.
Br Med J
.
1902
;
1
(
2157
):
1072
-
1077
.
42.
Bernhardt
R
.
Über die Leukämie der Haut
.
Arch f Dermat
.
1914
;
120
(
1
):
17
-
73
.
43.
Kewan
T
,
Bahaj
WS
,
Gurnari
C
, et al
.
Clinical and molecular characteristics of extramedullary acute myeloid leukemias
.
Leukemia
.
2024
;
38
(
9
):
2032
-
2036
.
44.
Oliveira
G
,
Wu
CJ
.
Dynamics and specificities of T cells in cancer immunotherapy
.
Nat Rev Cancer
.
2023
;
23
(
5
):
295
-
316
.
45.
Christopher
MJ
,
Petti
AA
,
Rettig
MP
, et al
.
Immune escape of relapsed AML cells after allogeneic transplantation
.
N Engl J Med
.
2018
;
379
(
24
):
2330
-
2341
.
46.
Stölzel
F
,
Hackmann
K
,
Kuithan
F
, et al
.
Clonal evolution including partial loss of human leukocyte antigen genes favoring extramedullary acute myeloid leukemia relapse after matched related allogeneic hematopoietic stem cell transplantation
.
Transplantation
.
2012
;
93
(
7
):
744
-
749
.
47.
Hansson
M
,
Gimsing
P
,
Badros
A
, et al
.
A phase I dose-escalation study of antibody BI-505 in relapsed/refractory multiple myeloma
.
Clin Cancer Res
.
2015
;
21
(
12
):
2730
-
2736
.
48.
Wichert
S
,
Juliusson
G
,
Johansson
Å
, et al
.
A single-arm, open-label, phase 2 clinical trial evaluating disease response following treatment with BI-505, a human anti-intercellular adhesion molecule-1 monoclonal antibody, in patients with smoldering multiple myeloma
.
PLoS One
.
2017
;
12
(
2
):
e0171205
.
49.
Yacyshyn
BR
,
Chey
WY
,
Goff
J
, et al
.
Double blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn’s disease
.
Gut
.
2002
;
51
(
1
):
30
-
36
.
You do not currently have access to this content.
Sign in via your Institution