• Myeloma cells depend on the mitoprotease ClpP to sustain polyamine biogenesis through restricted ornithine aminotransferase activity.

  • ClpP inhibition also triggers a cGAS–dependent type I IFN response capable of stimulating effective antimyeloma immunity in vivo.

Abstract

Orchestrating key homeostatic functions, mitochondria likely entail cancer vulnerabilities. Moreover, because of their bacterial ancestry, they can release potent immunogenic signals. In this study, we showed that the mitochondrial protease caseinolytic peptidase P (ClpP) is both a cell-intrinsic metabolic vulnerability and an actionable immunogenic trigger in multiple myeloma (MM). We found that ClpP messenger RNA is higher in bone marrow (BM)-purified malignant plasma cells than in normal or premalignant counterparts and that MM lines rank first in ClpP expression among human cancers. Moreover, we demonstrated that human MM cells are highly vulnerable to ClpP inhibition in vitro and in vivo. Surprisingly, MM cell dependence on ClpP was not accounted for by its acknowledged oxidative phosphorylation surveillance activity. Proteomic discovery of proteolytic targets, metabolomics, and metabolic tracing identified a critical control exerted by ClpP on ornithine aminotransferase abundance to sustain cytosolic biosynthesis of polyamines, which are essential for MM cells. Transcriptomics and targeted validation also revealed the activation of a cyclic GMP-AMP synthase (cGAS)–dependent type I interferon (IFN) response in ClpP-silenced MM cells, whose supernatants boosted dendritic cell activation and ability to stimulate IFN-γ production by T cells. In vivo, ClpP silencing reshaped the BM immune environment in immunocompetent mice by significantly expanding IFN-γ–producing CD4+ and CD8+ T cells and CD4+ T memory cells, while containing exhausted CD4+ T cells and myeloid-derived suppressor cells. Thus, ClpP is a newly identified addiction of MM cells whose inhibition not only exerts cell-intrinsic toxicity but also triggers otherwise indolent antitumoral immunity. Our findings yield a novel immunogenic chemotherapeutic framework with potential relevance to myeloma.

1.
Gulla
A
,
Anderson
KC
.
Multiple myeloma: the (r)evolution of current therapy and a glance into future
.
Haematologica
.
2020
;
105
(
10
):
2358
-
2367
.
2.
Nouri
K
,
Feng
Y
,
Schimmer
AD
.
Mitochondrial ClpP serine protease-biological function and emerging target for cancer therapy
.
Cell Death Dis
.
2020
;
11
(
10
):
841
.
3.
Vyas
S
,
Zaganjor
E
,
Haigis
MC
.
Mitochondria and cancer
.
Cell
.
2016
;
166
(
3
):
555
-
566
.
4.
Zong
W-X
,
Rabinowitz
JD
,
White
E
.
Mitochondria and cancer
.
Mol Cell
.
2016
;
61
(
5
):
667
-
676
.
5.
Wallace
DC
.
Mitochondria and cancer
.
Nat Rev Cancer
.
2012
;
12
(
10
):
685
-
698
.
6.
Milan
E
,
Perini
T
,
Resnati
M
, et al
.
A plastic SQSTM1/p62-dependent autophagic reserve maintains proteostasis and determines proteasome inhibitor susceptibility in multiple myeloma cells
.
Autophagy
.
2015
;
11
(
7
):
1161
-
1178
.
7.
Oliva
L
,
Orfanelli
U
,
Resnati
M
, et al
.
The amyloidogenic light chain is a stressor that sensitizes plasma cells to proteasome inhibitor toxicity
.
Blood
.
2017
;
129
(
15
):
2132
-
2142
.
8.
Bolzoni
M
,
Chiu
M
,
Accardi
F
, et al
.
Dependence on glutamine uptake and glutamine addiction characterize myeloma cells: a new attractive target
.
Blood
.
2016
;
128
(
5
):
667
-
679
.
9.
Fan
J
,
Kamphorst
JJ
,
Mathew
R
, et al
.
Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia
.
Mol Syst Biol
.
2013
;
9
:
712
.
10.
Dalva-Aydemir
S
,
Bajpai
R
,
Martinez
M
, et al
.
Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin
.
Clin Cancer Res
.
2015
;
21
(
5
):
1161
-
1171
.
11.
Zhan
X
,
Yu
W
,
Franqui-Machin
R
, et al
.
Alteration of mitochondrial biogenesis promotes disease progression in multiple myeloma
.
Oncotarget
.
2017
;
8
(
67
):
111213
-
111224
.
12.
Bajpai
R
,
Sharma
A
,
Achreja
A
, et al
.
Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma
.
Nat Commun
.
2020
;
11
:
1228
.
13.
Nair
R
,
Gupta
P
,
Shanmugam
M
.
Mitochondrial metabolic determinants of multiple myeloma growth, survival, and therapy efficacy
.
Front Oncol
.
2022
;
12
:
1000106
.
14.
Xiang
Y
,
Fang
B
,
Liu
Y
, et al
.
SR18292 exerts potent antitumor effects in multiple myeloma via inhibition of oxidative phosphorylation
.
Life Sci
.
2020
;
256
:
117971
.
15.
Marlein
CR
,
Piddock
RE
,
Mistry
JJ
, et al
.
CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma
.
Cancer Res
.
2019
;
79
(
9
):
2285
-
2297
.
16.
Pfanner
N
,
Warscheid
B
,
Wiedemann
N
.
Mitochondrial proteins: from biogenesis to functional networks [published correction appears in Nat Rev Mol Cell Biol. 2021;22(5):367]
.
Nat Rev Mol Cell Biol
.
2019
;
20
(
5
):
267
-
284
.
17.
Voos
W
,
Jaworek
W
,
Wilkening
A
,
Bruderek
M
.
Protein quality control at the mitochondrion
.
Essays Biochem
.
2016
;
60
(
2
):
213
-
225
.
18.
Kotiadis
VN
,
Duchen
MR
,
Osellame
LD
.
Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health
.
Biochim Biophys Acta
.
2014
;
1840
(
4
):
1254
-
1265
.
19.
Koppen
M
,
Langer
T
.
Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases
.
Crit Rev Biochem Mol Biol
.
2007
;
42
(
3
):
221
-
242
.
20.
Quirós
PM
,
Langer
T
,
López-Otín
C
.
New roles for mitochondrial proteases in health, ageing and disease
.
Nat Rev Mol Cell Biol
.
2015
;
16
(
6
):
345
-
359
.
21.
Yu
AYH
,
Houry
WA
.
ClpP: a distinctive family of cylindrical energy-dependent serine proteases
.
FEBS Lett
.
2007
;
581
(
19
):
3749
-
3757
.
22.
Stahl
M
,
Sieber
SA
.
An amino acid domino effect orchestrates ClpP’s conformational states
.
Curr Opin Chem Biol
.
2017
;
40
:
102
-
110
.
23.
Kang
SG
,
Dimitrova
MN
,
Ortega
J
,
Ginsburg
A
,
Maurizi
MR
.
Human mitochondrial ClpP is a stable heptamer that assembles into a tetradecamer in the presence of ClpX
.
J Biol Chem
.
2005
;
280
(
42
):
35424
-
35432
.
24.
Lowth
BR
,
Kirstein-Miles
J
,
Saiyed
T
, et al
.
Substrate recognition and processing by a Walker B mutant of the human mitochondrial AAA+ protein CLPX
.
J Struct Biol
.
2012
;
179
(
2
):
193
-
201
.
25.
Cole
A
,
Wang
Z
,
Coyaud
E
, et al
.
Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia
.
Cancer Cell
.
2015
;
27
(
6
):
864
-
876
.
26.
Ishizawa
J
,
Zarabi
SF
,
Davis
RE
, et al
.
Mitochondrial ClpP-mediated proteolysis induces selective cancer cell lethality
.
Cancer Cell
.
2019
;
35
(
5
):
721
-
737.e9
.
27.
Fischer
F
,
Langer
JD
,
Osiewacz
HD
.
Identification of potential mitochondrial CLPXP protease interactors and substrates suggests its central role in energy metabolism
.
Sci Rep
.
2015
;
5
:
18375
.
28.
Szczepanowska
K
,
Maiti
P
,
Kukat
A
, et al
.
CLPP coordinates mitoribosomal assembly through the regulation of ERAL1 levels
.
EMBO J
.
2016
;
35
(
23
):
2566
-
2583
.
29.
Hofsetz
E
,
Demir
F
,
Szczepanowska
K
, et al
.
The mouse heart mitochondria N terminome provides insights into ClpXP-mediated proteolysis
.
Mol Cell Proteomics
.
2020
;
19
(
8
):
1330
-
1345
.
30.
Szczepanowska
K
,
Senft
K
,
Heidler
J
, et al
.
A salvage pathway maintains highly functional respiratory complex I
.
Nat Commun
.
2020
;
11
:
1643
.
31.
Attal
M
,
Lauwers-Cances
V
,
Hulin
C
, et al;
IFM 2009 Study
.
Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma
.
N Engl J Med
.
2017
;
376
(
14
):
1311
-
1320
.
32.
Samur
MK
,
Minvielle
S
,
Gulla
A
, et al
.
Long intergenic non-coding RNAs have an independent impact on survival in multiple myeloma
.
Leukemia
.
2018
;
32
(
12
):
2626
-
2635
.
33.
Barretina
J
,
Caponigro
G
,
Stransky
N
, et al
.
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [published correction appears in Nature. 2019;565(7738):E5-E6]
.
Nature
.
2012
;
483
(
7391
):
603
-
607
.
34.
Ronayne
CT
,
Jackson
TD
,
Bennett
CF
,
Perry
EA
,
Kantorovic
N
,
Puigserver
P
.
Tetracyclines activate mitoribosome quality control and reduce ER stress to promote cell survival
.
EMBO Rep
.
2023
;
24
(
12
):
e57228
.
35.
Zhang
H
,
Alsaleh
G
,
Feltham
J
, et al
.
Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence
.
Mol Cell
.
2019
;
76
(
1
):
110
-
125.e9
.
36.
Vanpouille-Box
C
,
Demaria
S
,
Formenti
SC
,
Galluzzi
L
.
Cytosolic DNA sensing in organismal tumor control
.
Cancer Cell
.
2018
;
34
(
3
):
361
-
378
.
37.
Won
JK
,
Bakhoum
SF
.
The cytosolic DNA-sensing cGAS–sting pathway in cancer
.
Cancer Discov
.
2020
;
10
(
1
):
26
-
39
.
38.
Torres-Odio
S
,
Lei
Y
,
Gispert
S
, et al
.
Loss of mitochondrial protease CLPP activates Type I IFN responses through the mitochondrial DNA–cGAS–STING signaling axis
.
J Immunol
.
2021
;
206
(
8
):
1890
-
1900
.
39.
Soda
K
.
The mechanisms by which polyamines accelerate tumor spread
.
J Exp Clin Cancer Res
.
2011
;
30
:
95
.
40.
Casero
RA
,
Marton
LJ
.
Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases
.
Nat Rev Drug Discov
.
2007
;
65
(
5
):
373
-
390
. 2007;6.
41.
Childs
AC
,
Mehta
DJ
,
Gerner
EW
.
Polyamine-dependent gene expression
.
Cell Mol Life Sci
.
2003
;
60
(
7
):
1394
-
1406
.
42.
Murray-Stewart
TR
,
Woster
PM
,
Casero
RA
.
Targeting polyamine metabolism for cancer therapy and prevention
.
Biochem J
.
2016
;
473
(
19
):
2937
-
2953
.
43.
Gerner
EW
,
Meyskens
FL
.
Polyamines and cancer: old molecules, new understanding
.
Nat Rev Cancer
.
2004
;
4
(
10
):
781
-
792
.
44.
Durie
BGM
,
Salmon
SE
,
Russell
DH
.
Polyamines as markers of response and disease activity in cancer chemotherapy
.
Cancer Res
.
1977
;
37
(
1
):
214
-
221
.
45.
Van Dobbenburgh
OA
,
Houwen
B
,
Jurjens
H
,
Marrink
J
,
Halie
MR
,
Nieweg
HO
.
Plasma spermidine concentrations as early indication of response to therapy in human myeloma
.
J Clin Pathol
.
1983
;
36
(
7
):
804
-
807
.
46.
Bianchi-Smiraglia
A
,
Bagati
A
,
Fink
EE
, et al
.
Inhibition of the aryl hydrocarbon receptor/polyamine biosynthesis axis suppresses multiple myeloma
.
J Clin Invest
.
2018
;
128
(
10
):
4682
-
4696
.
47.
Madeo
F
,
Eisenberg
T
,
Pietrocola
F
,
Kroemer
G
.
Spermidine in health and disease
.
Science
.
2018
;
359
(
6374
):
eaan2788
.
48.
Zhang
H
,
Simon
AK
.
Polyamines reverse immune senescence via the translational control of autophagy
.
Autophagy
.
2020
;
16
(
1
):
181
-
182
.
49.
Pengo
N
,
Scolari
M
,
Oliva
L
, et al
.
Plasma cells require autophagy for sustainable immunoglobulin production
.
Nat Immunol
.
2013
;
14
(
3
):
298
-
305
.
50.
Halliley
JL
,
Tipton
CM
,
Liesveld
J
, et al
.
Long-lived plasma cells are contained within the CD19(-)CD38(hi)CD138(+) subset in human bone marrow
.
Immunity
.
2015
;
43
(
1
):
132
-
145
.
51.
Yao
L
,
Jayasinghe
RG
,
Lee
BH
, et al
.
Comprehensive characterization of the multiple myeloma immune microenvironment using integrated scRNA-seq, CyTOF, and CITE-seq analysis
.
Cancer Res Commun
.
2022
;
2
(
10
):
1255
-
1265
.
52.
Costa
F
,
Das
R
,
Kini Bailur
J
,
Dhodapkar
K
,
Dhodapkar
MV
.
Checkpoint inhibition in myeloma: opportunities and challenges
.
Front Immunol
.
2018
;
9
:
2204
.
53.
Dhodapkar
KM
,
Cohen
AD
,
Kaushal
A
, et al
.
Changes in bone marrow tumor and immune cells correlate with durability of remissions following BCMA CAR T therapy in myeloma
.
Blood Cancer Discov
.
2022
;
3
(
6
):
490
-
501
.
54.
Nakamura
K
,
Smyth
MJ
,
Martinet
L
.
Cancer immunoediting and immune dysregulation in multiple myeloma
.
Blood
.
2020
;
136
(
24
):
2731
-
2740
.
55.
Zavidij
O
,
Haradhvala
NJ
,
Mouhieddine
TH
, et al
.
Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma
.
Nat Cancer
.
2020
;
1
(
5
):
493
-
506
.
56.
Gormley
NJ
,
Pazdur
R
.
Immunotherapy combinations in multiple myeloma - known unknowns
.
N Engl J Med
.
2018
;
379
(
19
):
1791
-
1795
.
57.
Oliva
S
,
Troia
R
,
D’Agostino
M
,
Boccadoro
M
,
Gay
F
.
Promises and pitfalls in the use of PD-1/PD-L1 inhibitors in multiple myeloma
.
Front Immunol
.
2018
;
9
:
2749
.
58.
Cohen
AD
,
Garfall
AL
,
Stadtmauer
EA
, et al
.
B cell maturation antigen – specific CAR T cells are clinically active in multiple myeloma
.
J Clin Invest
.
2019
;
129
(
6
):
2210
-
2221
.
59.
D’Agostino
M
,
Raje
N
.
Anti-BCMA CAR T-cell therapy in multiple myeloma: can we do better?
.
Leukemia
.
2020
;
34
(
1
):
21
-
34
.
60.
Yamamoto
L
,
Amodio
N
,
Gulla
A
,
Anderson
KC
.
Harnessing the immune system against multiple myeloma: challenges and opportunities
.
Front Oncol
.
2021
;
10
:
606368
.
61.
De Duve
C
.
The origin of eukaryotes: a reappraisal
.
Nat Rev Genet
.
2007
;
8
(
5
):
395
-
403
.
62.
Ivashkiv
LB
,
Donlin
LT
.
Regulation of type I interferon responses
.
Nat Rev Immunol
.
2014
;
14
(
1
):
36
-
49
.
63.
Banoth
B
,
Cassel
SL
.
Mitochondria in innate immune signaling
.
Transl Res
.
2018
;
202
:
52
-
68
.
64.
Ou
L
,
Zhang
A
,
Cheng
Y
,
Chen
Y
.
The cGAS-STING pathway: a promising immunotherapy target
.
Front Immunol
.
2021
;
12
:
795048
.
65.
Hopfner
KP
,
Hornung
V
.
Molecular mechanisms and cellular functions of cGAS–STING signalling
.
Nat Rev Mol Cell Biol
.
2020
;
219
(
9
):
501
-
521
. 2020;21.
66.
Grabosch
S
,
Bulatovic
M
,
Zeng
F
, et al
.
Cisplatin-induced immune modulation in ovarian cancer mouse models with distinct inflammation profiles
.
Oncogene
.
2019
;
38
(
13
):
2380
-
2393
.
67.
Hsu
YA
,
Huang
CC
,
Kung
YJ
, et al
.
The anti-proliferative effects of type I IFN involve STAT6-mediated regulation of SP1 and BCL6
.
Cancer Lett
.
2016
;
375
(
2
):
303
-
312
.
68.
Li
A
,
Yi
M
,
Qin
S
,
Song
Y
,
Chu
Q
,
Wu
K
.
Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy
.
J Hematol Oncol
.
2019
;
12
:
35
.
69.
Galon
J
,
Bruni
D
.
Approaches to treat immune hot, altered and cold tumours with combination immunotherapies
.
Nat Rev Drug Discov
.
2019
;
18
(
3
):
197
-
218
.
70.
Kim
J
,
Kim
HS
,
Chung
JH
.
Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway
.
Exp Mol Med
.
2023
;
55
(
3
):
510
-
519
.
71.
West
AP
,
Khoury-Hanold
W
,
Staron
M
, et al
.
Mitochondrial DNA stress primes the antiviral innate immune response
.
Nature
.
2015
;
520
(
7548
):
553
-
557
.
72.
Yamazaki
T
,
Kirchmair
A
,
Sato
A
, et al
.
Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy
.
Nat Immunol
.
2020
;
21
(
10
):
1160
-
1171
.
73.
Riley
JS
,
Tait
SW
.
Mitochondrial DNA in inflammation and immunity
.
EMBO Rep
.
2020
;
21
(
4
):
e49799
.
74.
Tigano
M
,
Vargas
DC
,
Tremblay-Belzile
S
,
Fu
Y
,
Sfeir
A
.
Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance
.
Nature
.
2021
;
591
(
7850
):
477
-
481
.
75.
Zhang
L
,
Tai
YT
,
Ho
MZG
,
Qiu
L
,
Anderson
KC
.
Interferon-alpha-based immunotherapies in the treatment of B cell-derived hematologic neoplasms in today’s treat-to-target era
.
Exp Hematol Oncol
.
2017
;
6
(
1
):
20
.
76.
Vogl
DT
,
Kaufman
JL
,
Holstein
SA
, et al
.
Modakafusp alfa (TAK-573), an immunocytokine, shows clinical activity in patients with relapsed/refractory multiple myeloma; updated results from a first-in-human phase 1 study [abstract]
.
Blood
.
2021
;
138
(
suppl 1
):
898
. 898.
77.
Gulla
A
,
Morelli
E
,
Samur
MK
, et al
.
Bortezomib induces anti-multiple myeloma immune response mediated by cGAS/STING pathway activation
.
Blood Cancer Discov
.
2021
;
2
(
5
):
468
-
483
.
78.
Gulla
A
,
Morelli
E
,
Johnstone
M
, et al
.
Loss of GABARAP mediates resistance to immunogenic chemotherapy in multiple myeloma
.
Blood
.
2024
;
143
(
25
):
2612
-
2626
.
79.
Key
J
,
Torres-Odio
S
,
Bach
NC
, et al
.
Inactivity of peptidase ClpP causes primary accumulation of mitochondrial disaggregase ClpX with its interacting nucleoid proteins, and of mtDNA
.
Cells
.
2021
;
10
(
12
):
3354
.
80.
Jenkinson
EM
,
Rehman
AU
,
Walsh
T
, et al
.
Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease
.
Am J Hum Genet
.
2013
;
92
(
4
):
605
-
613
.
81.
Lee
YG
,
Kim
HW
,
Nam
Y
, et al
.
LONP1 and ClpP cooperatively regulate mitochondrial proteostasis for cancer cell survival
.
Oncogenesis
.
2021
;
10
(
2
):
18
.
82.
Böttcher
T
,
Sieber
SA
.
Beta-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus
.
J Am Chem Soc
.
2008
;
130
(
44
):
14400
-
14401
.
83.
Gronauer
TF
,
Mandl
MM
,
Lakemeyer
M
, et al
.
Design and synthesis of tailored human caseinolytic protease P inhibitors
.
Chem Commun
.
2018
;
54
(
70
):
9833
-
9836
.
84.
Tan
J
,
Grouleff
JJ
,
Jitkova
Y
, et al
.
De novo design of boron-based peptidomimetics as potent inhibitors of human ClpP in the presence of human ClpX
.
J Med Chem
.
2019
;
62
(
13
):
6377
-
6390
.
85.
Hackl
MW
,
Lakemeyer
M
,
Dahmen
M
, et al
.
Phenyl esters are potent inhibitors of caseinolytic protease P and reveal a stereogenic switch for deoligomerization
.
J Am Chem Soc
.
2015
;
137
(
26
):
8475
-
8483
.
You do not currently have access to this content.
Sign in via your Institution