Abstract

Immunological memory in adaptive and innate immune cells is well characterized, enabling enhanced responses upon secondary challenges. However, it has only been recently appreciated that the nonimmune target cells of inflammation, particularly organ-specific stem cells (SCs), also exhibit memory of previous inflammatory exposures. Previous inflammation experience imprints on the SCs and influences their regenerative potential and responses to subsequent inflammatory insults. This phenomenon has been observed in hematopoietic, intestinal, and skin epithelial SCs, with profound implications for tissue homeostasis, disease progression, and therapeutic strategies. Herein, we expand and develop the notion of inflammatory memory of SCs and explore recent insights in the field. We discuss the emerging understanding of the molecular underpinnings and their potential clinical and biological implications. Inflammatory memory is driven by spatiotemporal changes in gene loci and transcription regulated by DNA and histones’ epigenetic modifications, metabolic reprogramming, and chromatin accessibility changes. Understanding these mechanisms is critical for improving the outcomes of hematologic diseases, hematopoietic SC transplantation, and cellular immunotherapies.

1.
Pietras
EM
.
Inflammation: a key regulator of hematopoietic stem cell fate in health and disease
.
Blood
.
2017
;
130
(
15
):
1693
-
1698
.
2.
Karin
M
,
Clevers
H
.
Reparative inflammation takes charge of tissue regeneration
.
Nature
.
2016
;
529
(
7586
):
307
-
315
.
3.
Farber
DL
,
Netea
MG
,
Radbruch
A
,
Rajewsky
K
,
Zinkernagel
RM
.
Immunological memory: lessons from the past and a look to the future
.
Nat Rev Immunol
.
2016
;
16
(
2
):
124
-
128
.
4.
Ahmed
R
,
Gray
D
.
Immunological memory and protective immunity: understanding their relation
.
Science
.
1996
;
272
(
5258
):
54
-
60
.
5.
Bonilla
FA
,
Oettgen
HC
.
Adaptive immunity
.
J Allergy Clin Immunol
.
2010
;
125
(
2 suppl 2
):
S33
-
S40
.
6.
Sallusto
F
,
Geginat
J
,
Lanzavecchia
A
.
Central memory and effector memory T cell subsets: function, generation, and maintenance
.
Annu Rev Immunol
.
2004
;
22
:
745
-
763
.
7.
Kurosaki
T
,
Kometani
K
,
Ise
W
.
Memory B cells
.
Nat Rev Immunol
.
2015
;
15
(
3
):
149
-
159
.
8.
Christo
SN
,
Park
SL
,
Mueller
SN
,
Mackay
LK
.
The multifaceted role of tissue-resident memory T cells
.
Annu Rev Immunol
.
2024
;
42
(
1
):
317
-
345
.
9.
Szabo
PA
,
Miron
M
,
Farber
DL
.
Location, location, location: tissue resident memory T cells in mice and humans
.
Sci Immunol
.
2019
;
4
(
34
):
eaas9673
.
10.
Gavil
NV
,
Cheng
K
,
Masopust
D
.
Resident memory T cells and cancer
.
Immunity
.
2024
;
57
(
8
):
1734
-
1751
.
11.
Allie
SR
,
Randall
TD
.
Resident memory B cells
.
Viral Immunol
.
2020
;
33
(
4
):
282
-
293
.
12.
Cancro
MP
,
Tomayko
MM
.
Memory B cells and plasma cells: the differentiative continuum of humoral immunity
.
Immunol Rev
.
2021
;
303
(
1
):
72
-
82
.
13.
Foster
SL
,
Hargreaves
DC
,
Medzhitov
R
.
Gene-specific control of inflammation by TLR-induced chromatin modifications
.
Nature
.
2007
;
447
(
7147
):
972
-
978
.
14.
Mills
TS
,
Kain
B
,
Burchill
MA
, et al
.
A distinct metabolic and epigenetic state drives trained immunity in HSC-derived macrophages from autoimmune mice
.
Cell Stem Cell
.
2024
;
31
(
11
):
1630
-
1649.e8
.
15.
Divangahi
M
,
Aaby
P
,
Khader
SA
, et al
.
Trained immunity, tolerance, priming and differentiation: distinct immunological processes
.
Nat Immunol
.
2021
;
22
(
1
):
2
-
6
.
16.
Bekkering
S
,
Domínguez-Andrés
J
,
Joosten
LAB
,
Riksen
NP
,
Netea
MG
.
Trained immunity: reprogramming innate immunity in health and disease
.
Annu Rev Immunol
.
2021
;
39
:
667
-
693
.
17.
Kaufmann
E
,
Sanz
J
,
Dunn
JL
, et al
.
BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis
.
Cell
.
2018
;
172
(
1-2
):
176
-
190.e19
.
18.
Quintin
J
,
Saeed
S
,
Martens
JHA
, et al
.
Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes
.
Cell Host Microbe
.
2012
;
12
(
2
):
223
-
232
.
19.
Kleinnijenhuis
J
,
Quintin
J
,
Preijers
F
, et al
.
Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
43
):
17537
-
17542
.
20.
Cirovic
B
,
de Bree
LCJ
,
Groh
L
, et al
.
BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment
.
Cell Host Microbe
.
2020
;
28
(
2
):
322
-
334.e5
.
21.
Arts
RJW
,
Moorlag
S
,
Novakovic
B
, et al
.
BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity
.
Cell Host Microbe
.
2018
;
23
(
1
):
89
-
100.e5
.
22.
Cheong
JG
,
Ravishankar
A
,
Sharma
S
, et al
.
Epigenetic memory of coronavirus infection in innate immune cells and their progenitors
.
Cell
.
2023
;
186
(
18
):
3882
-
3902.e24
.
23.
Hole
CR
,
Wager
CML
,
Castro-Lopez
N
, et al
.
Induction of memory-like dendritic cell responses in vivo
.
Nat Commun
.
2019
;
10
(
1
):
2955
.
24.
Domínguez-Andrés
J
,
Dos Santos
JC
,
Bekkering
S
, et al
.
Trained immunity: adaptation within innate immune mechanisms
.
Physiol Rev
.
2023
;
103
(
1
):
313
-
346
.
25.
Sun
JC
,
Beilke
JN
,
Lanier
LL
.
Adaptive immune features of natural killer cells
.
Nature
.
2009
;
457
(
7229
):
557
-
561
.
26.
Gamliel
M
,
Goldman-Wohl
D
,
Isaacson
B
, et al
.
Trained memory of human uterine NK cells enhances their function in subsequent pregnancies
.
Immunity
.
2018
;
48
(
5
):
951
-
962.e5
.
27.
Lau
CM
,
Adams
NM
,
Geary
CD
, et al
.
Epigenetic control of innate and adaptive immune memory
.
Nat Immunol
.
2018
;
19
(
9
):
963
-
972
.
28.
Serafini
N
,
Jarade
A
,
Surace
L
, et al
.
Trained ILC3 responses promote intestinal defense
.
Science
.
2022
;
375
(
6583
):
859
-
863
.
29.
Weizman
OE
,
Song
E
,
Adams
NM
, et al
.
Mouse cytomegalovirus-experienced ILC1s acquire a memory response dependent on the viral glycoprotein m12
.
Nat Immunol
.
2019
;
20
(
8
):
1004
-
1011
.
30.
Zhao
D
,
Ravikumar
V
,
Leach
TJ
, et al
.
Inflammation-induced epigenetic imprinting regulates intestinal stem cells
.
Cell Stem Cell
.
2024
;
31
(
10
):
1447
-
1464.e6
.
31.
Lim
AI
,
McFadden
T
,
Link
VM
, et al
.
Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring
.
Science
.
2021
;
373
(
6558
):
eabf3002
.
32.
Levra Levron
C
,
Donati
G
.
Multiplicity of stem cell memories of inflammation and tissue repair in epithelia
.
Trends Cell Biol
.
2024
;
34
(
1
):
3
-
6
.
33.
Naik
S
,
Larsen
SB
,
Gomez
NC
, et al
.
Inflammatory memory sensitizes skin epithelial stem cells to tissue damage
.
Nature
.
2017
;
550
(
7677
):
475
-
480
.
34.
Larsen
SB
,
Cowley
CJ
,
Sajjath
SM
, et al
.
Establishment, maintenance, and recall of inflammatory memory
.
Cell Stem Cell
.
2021
;
28
(
10
):
1758
-
1774.e8
.
35.
Gonzales
KAU
,
Polak
L
,
Matos
I
, et al
.
Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories
.
Science
.
2021
;
374
(
6571
):
eabh2444
.
36.
Levra Levron
C
,
Watanabe
M
,
Proserpio
V
, et al
.
Tissue memory relies on stem cell priming in distal undamaged areas
.
Nat Cell Biol
.
2023
;
25
(
5
):
740
-
753
.
37.
Naik
S
,
Fuchs
E
.
Inflammatory memory and tissue adaptation in sickness and in health
.
Nature
.
2022
;
607
(
7918
):
249
-
255
.
38.
de Laval
B
,
Maurizio
J
,
Kandalla
PK
, et al
.
C/EBPβ-dependent epigenetic memory induces trained immunity in hematopoietic stem cells
.
Cell Stem Cell
.
2020
;
26
(
5
):
657
-
674.e658
.
39.
Yu
VWC
,
Yusuf
RZ
,
Oki
T
, et al
.
Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells
.
Cell
.
2016
;
167
(
5
):
1310
-
1322.e17
.
40.
Zeng
AGX
,
Nagree
MS
,
Jakobsen
NA
, et al
.
Identification of a human hematopoietic stem cell subset that retains memory of inflammatory stress
.
bioRxiv
.
Preprint posted online 18 December 2023
.
41.
Del Poggetto
E
,
Ho
IL
,
Balestrieri
C
, et al
.
Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis
.
Science
.
2021
;
373
(
6561
):
eabj0486
.
42.
Falvo
DJ
,
Grimont
A
,
Zumbo
P
, et al
.
A reversible epigenetic memory of inflammatory injury controls lineage plasticity and tumor initiation in the mouse pancreas
.
Dev Cell
.
2023
;
58
(
24
):
2959
-
2973.e7
.
43.
Ordovas-Montanes
J
,
Dwyer
DF
,
Nyquist
SK
, et al
.
Allergic inflammatory memory in human respiratory epithelial progenitor cells
.
Nature
.
2018
;
560
(
7720
):
649
-
654
.
44.
Hinte
LC
,
Castellano-Castillo
D
,
Ghosh
A
, et al
.
Adipose tissue retains an epigenetic memory of obesity after weight loss
.
Nature
.
2024
;
636
(
8042
):
457
-
465
.
45.
Qiu
J
,
Xu
B
,
Ye
D
, et al
.
Cancer cells resistant to immune checkpoint blockade acquire interferon-associated epigenetic memory to sustain T cell dysfunction
.
Nat Cancer
.
2023
;
4
(
1
):
43
-
61
.
46.
Harmange
G
,
Hueros
RAR
,
Schaff
DL
, et al
.
Disrupting cellular memory to overcome drug resistance
.
Nat Commun
.
2023
;
14
(
1
):
7130
.
47.
Dhenni
R
,
Phan
TG
.
The geography of memory B cell reactivation in vaccine-induced immunity and in autoimmune disease relapses
.
Immunol Rev
.
2020
;
296
(
1
):
62
-
86
.
48.
Reusch
L
,
Angeletti
D
.
Memory B-cell diversity: from early generation to tissue residency and reactivation
.
Eur J Immunol
.
2023
;
53
(
4
):
e2250085
.
49.
Strobl
J
,
Pandey
RV
,
Krausgruber
T
, et al
.
Long-term skin-resident memory T cells proliferate in situ and are involved in human graft-versus-host disease
.
Sci Transl Med
.
2020
;
12
(
570
):
eabb7028
.
50.
Tkachev
V
,
Kaminski
J
,
Potter
EL
, et al
.
Spatiotemporal single-cell profiling reveals that invasive and tissue-resident memory donor CD8+ T cells drive gastrointestinal acute graft-versus-host disease
.
Sci Transl Med
.
2021
;
13
(
576
):
eabc0227
.
51.
Clevers
H
.
The intestinal crypt, a prototype stem cell compartment
.
Cell
.
2013
;
154
(
2
):
274
-
284
.
52.
Gehart
H
,
Clevers
H
.
Tales from the crypt: new insights into intestinal stem cells
.
Nat Rev Gastroenterol Hepatol
.
2019
;
16
(
1
):
19
-
34
.
53.
Clevers
HC
,
Bevins
CL
.
Paneth cells: maestros of the small intestinal crypts
.
Annu Rev Physiol
.
2013
;
75
:
289
-
311
.
54.
Ayyaz
A
,
Kumar
S
,
Sangiorgi
B
, et al
.
Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell
.
Nature
.
2019
;
569
(
7754
):
121
-
125
.
55.
Nusse
YM
,
Savage
AK
,
Marangoni
P
, et al
.
Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche
.
Nature
.
2018
;
559
(
7712
):
109
-
113
.
56.
Takashima
S
,
Martin
ML
,
Jansen
SA
, et al
.
T cell-derived interferon-gamma programs stem cell death in immune-mediated intestinal damage
.
Sci Immunol
.
2019
;
4
(
42
):
eaay8556
.
57.
Lindemans
CA
,
Calafiore
M
,
Mertelsmann
AM
, et al
.
Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration
.
Nature
.
2015
;
528
(
7583
):
560
-
564
.
58.
Fu
YY
,
Egorova
A
,
Sobieski
C
, et al
.
T cell recruitment to the intestinal stem cell compartment drives immune-mediated intestinal damage after allogeneic transplantation
.
Immunity
.
2019
;
51
(
1
):
90
-
103.e3
.
59.
Hanash
AM
,
Dudakov
JA
,
Hua
G
, et al
.
Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease
.
Immunity
.
2012
;
37
(
2
):
339
-
350
.
60.
Ferrara
JL
,
Smith
CM
,
Sheets
J
,
Reddy
P
,
Serody
JS
.
Altered homeostatic regulation of innate and adaptive immunity in lower gastrointestinal tract GVHD pathogenesis
.
J Clin Invest
.
2017
;
127
(
7
):
2441
-
2451
.
61.
Zeiser
R
,
Blazar
BR
.
Acute graft-versus-host disease - biologic process, prevention, and therapy
.
N Engl J Med
.
2017
;
377
(
22
):
2167
-
2179
.
62.
Hill
GR
,
Betts
BC
,
Tkachev
V
,
Kean
LS
,
Blazar
BR
.
Current concepts and advances in graft-versus-host disease immunology
.
Annu Rev Immunol
.
2021
;
39
:
19
-
49
.
63.
Blanpain
C
,
Fuchs
E
.
Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration
.
Science
.
2014
;
344
(
6189
):
1242281
.
64.
Blanpain
C
,
Lowry
WE
,
Geoghegan
A
,
Polak
L
,
Fuchs
E
.
Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche
.
Cell
.
2004
;
118
(
5
):
635
-
648
.
65.
Sun
SJ
,
Aguirre-Gamboa
R
,
de Bree
LCJ
, et al
.
BCG vaccination alters the epigenetic landscape of progenitor cells in human bone marrow to influence innate immune responses
.
Immunity
.
2024
;
57
(
9
):
2095
-
2107.e8
.
66.
Khan
N
,
Downey
J
,
Sanz
J
, et al
.
M. tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity
.
Cell
.
2020
;
183
(
3
):
752
-
770.e22
.
67.
Mitroulis
I
,
Ruppova
K
,
Wang
B
, et al
.
Modulation of myelopoiesis progenitors is an integral component of trained immunity
.
Cell
.
2018
;
172
(
1-2
):
147
-
161.e12
.
68.
Pascual
G
,
Domínguez
D
,
Elosúa-Bayes
M
, et al
.
Dietary palmitic acid promotes a prometastatic memory via Schwann cells
.
Nature
.
2021
;
599
(
7885
):
485
-
490
.
69.
Saeed
S
,
Quintin
J
,
Kerstens
HH
, et al
.
Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity
.
Science
.
2014
;
345
(
6204
):
1251086
.
70.
Netea
MG
,
Quintin
J
,
van der Meer
JW
.
Trained immunity: a memory for innate host defense
.
Cell Host Microbe
.
2011
;
9
(
5
):
355
-
361
.
71.
Ji
H
,
Ehrlich
LI
,
Seita
J
, et al
.
Comprehensive methylome map of lineage commitment from haematopoietic progenitors
.
Nature
.
2010
;
467
(
7313
):
338
-
342
.
72.
Bock
C
,
Beerman
I
,
Lien
WH
, et al
.
DNA methylation dynamics during in vivo differentiation of blood and skin stem cells
.
Mol Cell
.
2012
;
47
(
4
):
633
-
647
.
73.
Saxena
M
,
Shivdasani
RA
.
Epigenetic signatures and plasticity of intestinal and other stem cells
.
Annu Rev Physiol
.
2021
;
83
:
405
-
427
.
74.
Jadhav
U
,
Saxena
M
,
O'Neill
NK
, et al
.
Dynamic reorganization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr5+ intestinal stem cells
.
Cell Stem Cell
.
2017
;
21
(
1
):
65
-
77.e5
.
75.
Meng
Y
,
Nerlov
C
.
Epigenetic regulation of hematopoietic stem cell fate
.
Trends Cell Biol
.
2025
;
35
(
3
):
217
-
229
.
76.
Ye
L
,
Jiang
Y
,
Zhang
M
.
Crosstalk between glucose metabolism, lactate production and immune response modulation
.
Cytokine Growth Factor Rev
.
2022
;
68
:
81
-
92
.
77.
Murray
PJ
,
Rathmell
J
,
Pearce
E
.
SnapShot: immunometabolism
.
Cell Metab
.
2015
;
22
(
1
):
190
-
190.e1
.
78.
McCarthy
SA
,
Mufson
RA
,
Pearce
EJ
,
Rathmell
JC
,
Howcroft
TK
.
Metabolic reprogramming of the immune response in the tumor microenvironment
.
Cancer Biol Ther
.
2013
;
14
(
4
):
315
-
318
.
79.
Fujiwara
H
,
Seike
K
,
Brooks
MD
, et al
.
Mitochondrial complex II in intestinal epithelial cells regulates T cell-mediated immunopathology
.
Nat Immunol
.
2021
;
22
(
11
):
1440
-
1451
.
80.
Baixauli
F
,
Piletic
K
,
Puleston
DJ
, et al
.
An LKB1-mitochondria axis controls TH17 effector function
.
Nature
.
2022
;
610
(
7932
):
555
-
561
.
81.
Pagan
AJ
,
Lee
LJ
,
Edwards-Hicks
J
, et al
.
mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity
.
Cell
.
2022
;
185
(
20
):
3720
-
3738.e13
.
82.
Caputa
G
,
Matsushita
M
,
Sanin
DE
, et al
.
Intracellular infection and immune system cues rewire adipocytes to acquire immune function
.
Cell Metab
.
2022
;
34
(
5
):
747
-
760.e6
.
83.
Uhl
FM
,
Chen
S
,
O'Sullivan
D
, et al
.
Metabolic reprogramming of donor T cells enhances graft-versus-leukemia effects in mice and humans
.
Sci Transl Med
.
2020
;
12
(
567
):
eabb8969
.
84.
Apostolova
P
,
Pearce
EL
.
Lactic acid and lactate: revisiting the physiological roles in the tumor microenvironment
.
Trends Immunol
.
2022
;
43
(
12
):
969
-
977
.
85.
Schvartzman
JM
,
Thompson
CB
,
Finley
LWS
.
Metabolic regulation of chromatin modifications and gene expression
.
J Cell Biol
.
2018
;
217
(
7
):
2247
-
2259
.
86.
Baksh
SC
,
Finley
LWS
.
Metabolic coordination of cell fate by alpha-ketoglutarate-dependent dioxygenases
.
Trends Cell Biol
.
2021
;
31
(
1
):
24
-
36
.
87.
Ludikhuize
MC
,
Meerlo
M
,
Burgering
BMT
,
Rodríguez Colman
MJ
.
Protocol to profile the bioenergetics of organoids using Seahorse
.
STAR Protoc
.
2021
;
2
(
1
):
100386
.
88.
Letouzé
E
,
Martinelli
C
,
Loriot
C
, et al
.
SDH mutations establish a hypermethylator phenotype in paraganglioma
.
Cancer Cell
.
2013
;
23
(
6
):
739
-
752
.
89.
Wentzel
JF
,
Lewies
A
,
Bronkhorst
AJ
,
van Dyk
E
,
du Plessis
LH
,
Pretorius
PJ
.
Exposure to high levels of fumarate and succinate leads to apoptotic cytotoxicity and altered global DNA methylation profiles in vitro
.
Biochimie
.
2017
;
135
:
28
-
34
.
90.
Plikus
MV
,
Guerrero-Juarez
CF
,
Treffeisen
E
,
Gay
DL
.
Epigenetic control of skin and hair regeneration after wounding
.
Exp Dermatol
.
2015
;
24
(
3
):
167
-
170
.
91.
Lien
WH
,
Guo
X
,
Polak
L
, et al
.
Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage
.
Cell Stem Cell
.
2011
;
9
(
3
):
219
-
232
.
92.
Ezhkova
E
,
Lien
WH
,
Stokes
N
,
Pasolli
HA
,
Silva
JM
,
Fuchs
E
.
EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair
.
Genes Dev
.
2011
;
25
(
5
):
485
-
498
.
93.
Hornung
V
,
Ablasser
A
,
Charrel-Dennis
M
, et al
.
AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC
.
Nature
.
2009
;
458
(
7237
):
514
-
518
.
94.
Karin
M
,
Liu
Z
,
Zandi
E
.
AP-1 function and regulation
.
Curr Opin Cell Biol
.
1997
;
9
(
2
):
240
-
246
.
95.
Chen
C
,
Man
N
,
Liu
F
, et al
.
Epigenetic and transcriptional regulation of innate immunity in cancer
.
Cancer Res
.
2022
;
82
(
11
):
2047
-
2056
.
96.
Lyko
F
.
The DNA methyltransferase family: a versatile toolkit for epigenetic regulation
.
Nat Rev Genet
.
2018
;
19
(
2
):
81
-
92
.
97.
Bröske
AM
,
Vockentanz
L
,
Kharazi
S
, et al
.
DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction
.
Nat Genet
.
2009
;
41
(
11
):
1207
-
1215
.
98.
Izzo
F
,
Lee
SC
,
Poran
A
, et al
.
DNA methylation disruption reshapes the hematopoietic differentiation landscape
.
Nat Genet
.
2020
;
52
(
4
):
378
-
387
.
99.
Li
Z
,
Cai
X
,
Cai
CL
, et al
.
Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies
.
Blood
.
2011
;
118
(
17
):
4509
-
4518
.
100.
Caiado
F
,
Kovtonyuk
LV
,
Gonullu
NG
,
Fullin
J
,
Boettcher
S
,
Manz
MG
.
Aging drives Tet2+/- clonal hematopoiesis via IL-1 signaling
.
Blood
.
2023
;
141
(
8
):
886
-
903
.
101.
Ferrara
JLM
,
Chaudhry
MS
.
GVHD: biology matters
.
Blood Adv
.
2018
;
2
(
22
):
3411
-
3417
.
102.
Etra
A
,
Gergoudis
S
,
Morales
G
, et al
.
Assessment of systemic and gastrointestinal tissue damage biomarkers for GVHD risk stratification
.
Blood Adv
.
2022
;
6
(
12
):
3707
-
3715
.
103.
MacMillan
ML
,
Robin
M
,
Harris
AC
, et al
.
A refined risk score for acute graft-versus-host disease that predicts response to initial therapy, survival, and transplant-related mortality
.
Biol Blood Marrow Transpl
.
2015
;
21
(
4
):
761
-
767
.
104.
Washington
K
,
Jagasia
M
.
Pathology of graft-versus-host disease in the gastrointestinal tract
.
Hum Pathol
.
2009
;
40
(
7
):
909
-
917
.
105.
Kambham
N
,
Higgins
JP
,
Sundram
U
,
Troxell
ML
.
Hematopoietic stem cell transplantation: graft versus host disease and pathology of gastrointestinal tract, liver, and lung
.
Adv Anat Pathol
.
2014
;
21
(
5
):
301
-
320
.
106.
Salomao
M
,
Dorritie
K
,
Mapara
MY
,
Sepulveda
A
.
Histopathology of graft-vs-host disease of gastrointestinal tract and liver: an update
.
Am J Clin Pathol
.
2016
;
145
(
5
):
591
-
603
.
107.
Melson
J
,
Jakate
S
,
Fung
H
,
Arai
S
,
Keshavarzian
A
.
Crypt loss is a marker of clinical severity of acute gastrointestinal graft-versus-host disease
.
Am J Hematol
.
2007
;
82
(
10
):
881
-
886
.
108.
Zhao
D
,
Kim
YH
,
Jeong
S
, et al
.
Survival signal REG3α prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease
.
J Clin Invest
.
2018
;
128
(
11
):
4970
-
4979
.
109.
Wu
SR
,
Reddy
P
.
Tissue tolerance: a distinct concept to control acute GVHD severity
.
Blood
.
2017
;
129
(
13
):
1747
-
1752
.
110.
Mohty
M
,
Holler
E
,
Jagasia
M
, et al
.
Refractory acute graft-versus-host disease: a new working definition beyond corticosteroid refractoriness
.
Blood
.
2020
;
136
(
17
):
1903
-
1906
.
111.
Akahoshi
Y
,
Spyrou
N
,
Hoepting
M
, et al
.
Flares of acute graft-versus-host disease: a Mount Sinai Acute GVHD International Consortium analysis
.
Blood Adv
.
2024
;
8
(
8
):
2047
-
2057
.
112.
Topper
MJ
,
Vaz
M
,
Marrone
KA
,
Brahmer
JR
,
Baylin
SB
.
The emerging role of epigenetic therapeutics in immuno-oncology
.
Nat Rev Clin Oncol
.
2020
;
17
(
2
):
75
-
90
.
113.
He
W
,
Yin
X
,
Xu
C
, et al
.
Ascorbic acid reprograms epigenome and epitranscriptome by reducing Fe(III) in the catalytic cycle of dioxygenases
.
ACS Chem Biol
.
2024
;
19
(
1
):
129
-
140
.
114.
Cimmino
L
,
Dolgalev
I
,
Wang
Y
, et al
.
Restoration of TET2 function blocks aberrant self-renewal and leukemia progression
.
Cell
.
2017
;
170
(
6
):
1079
-
1095.e20
.
115.
Pang
L
,
Zhou
F
,
Liu
Y
, et al
.
Epigenetic regulation of tumor immunity
.
J Clin Invest
.
2024
;
134
(
12
):
e178540
.
116.
Reikvam
H
,
Tsykunova
G
,
Sandnes
M
,
Wendelbo
Ø
.
Infectious complications and the utility of serum and cellular markers of infections in the setting of allogeneic hematopoietic stem cell transplantation
.
Expert Rev Clin Immunol
.
2025
;
21
(
3
):
291
-
303
.
117.
Sahin
U
,
Toprak
SK
,
Atilla
PA
,
Atilla
E
,
Demirer
T
.
An overview of infectious complications after allogeneic hematopoietic stem cell transplantation
.
J Infect Chemother
.
2016
;
22
(
8
):
505
-
514
.
118.
Bhutani
D
,
Jaiyeoba
C
,
Kim
S
, et al
.
Relationship between clostridium difficile infection and gastrointestinal graft versus host disease in recipients of allogeneic stem cell transplantation
.
Bone Marrow Transpl
.
2019
;
54
(
1
):
164
-
167
.
119.
Degli-Esposti
MA
,
Hill
GR
.
Immune control of cytomegalovirus reactivation in stem cell transplantation
.
Blood
.
2022
;
139
(
9
):
1277
-
1288
.
120.
Hill
JA
,
Mayer
BT
,
Xie
H
, et al
.
The cumulative burden of double-stranded DNA virus detection after allogeneic HCT is associated with increased mortality
.
Blood
.
2017
;
129
(
16
):
2316
-
2325
.
121.
Martins
JP
,
Andoniou
CE
,
Fleming
P
, et al
.
Strain-specific antibody therapy prevents cytomegalovirus reactivation after transplantation
.
Science
.
2019
;
363
(
6424
):
288
-
293
.
122.
Mathewson
ND
,
Jenq
R
,
Mathew
AV
, et al
.
Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease
.
Nat Immunol
.
2016
;
17
(
5
):
505
-
513
.
123.
Riwes
MM
,
Golob
JL
,
Magenau
J
, et al
.
Feasibility of a dietary intervention to modify gut microbial metabolism in patients with hematopoietic stem cell transplantation
.
Nat Med
.
2023
;
29
(
11
):
2805
-
2813
.
124.
Adolph
TE
,
Meyer
M
,
Schwärzler
J
,
Mayr
L
,
Grabherr
F
,
Tilg
H
.
The metabolic nature of inflammatory bowel diseases
.
Nat Rev Gastroenterol Hepatol
.
2022
;
19
(
12
):
753
-
767
.
125.
Shah
SC
,
Itzkowitz
SH
.
Colorectal cancer in inflammatory bowel disease: mechanisms and management
.
Gastroenterology
.
2022
;
162
(
3
):
715
-
730.e3
.
126.
Jamy
O
,
Zeiser
R
,
Chen
YB
.
Novel developments in the prophylaxis and treatment of acute GVHD
.
Blood
.
2023
;
142
(
12
):
1037
-
1046
.
127.
Raoufi
A
,
Soleimani Samarkhazan
H
,
Nouri
S
, et al
.
Macrophages in graft-versus-host disease (GVHD): dual roles as therapeutic tools and targets
.
Clin Exp Med
.
2025
;
25
(
1
):
73
.
128.
Daccache
JA
,
Naik
S
.
Inflammatory memory in chronic skin disease
.
JID Innov
.
2024
;
4
(
3
):
100277
.
129.
Genovese
G
,
Kähler
AK
,
Handsaker
RE
, et al
.
Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
.
N Engl J Med
.
2014
;
371
(
26
):
2477
-
2487
.
130.
DeVries
A
,
McCauley
K
,
Fadrosh
D
, et al
.
Maternal prenatal immunity, neonatal trained immunity, and early airway microbiota shape childhood asthma development
.
Allergy
.
2022
;
77
(
12
):
3617
-
3628
.
131.
Badii
M
,
Gaal
O
,
Popp
RA
,
Crișan
TO
,
Joosten
LAB
.
Trained immunity and inflammation in rheumatic diseases
.
Joint Bone Spine
.
2022
;
89
(
4
):
105364
.
132.
Jaiswal
S
,
Natarajan
P
,
Silver
AJ
, et al
.
Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease
.
N Engl J Med
.
2017
;
377
(
2
):
111
-
121
.
133.
Schleicher
WE
,
Hoag
B
,
De Dominici
M
,
DeGregori
J
,
Pietras
EM
.
CHIP: a clonal odyssey of the bone marrow niche
.
J Clin Invest
.
2024
;
134
(
15
):
e180068
.
134.
Marshall
CH
,
Gondek
LP
,
Luo
J
,
Antonarakis
ES
.
Clonal hematopoiesis of indeterminate potential in patients with solid tumor malignancies
.
Cancer Res
.
2022
;
82
(
22
):
4107
-
4113
.
135.
Wong
WJ
,
Emdin
C
,
Bick
AG
, et al
.
Clonal haematopoiesis and risk of chronic liver disease
.
Nature
.
2023
;
616
(
7958
):
747
-
754
.
136.
Bouzid
H
,
Belk
JA
,
Jan
M
, et al
.
Clonal hematopoiesis is associated with protection from Alzheimer's disease
.
Nat Med
.
2023
;
29
(
7
):
1662
-
1670
.
You do not currently have access to this content.
Sign in via your Institution