• RhoA GTPase-activating protein Myo9b controls actin cytoskeleton rearrangement and neutrophil recruitment under inflammatory conditions.

  • Myo9b regulates RhoA activity, which is essential for chemokine- and selectin-induced Rap1 and talin-1 dependent β2-integrin activation.

Abstract

An acute inflammatory response to infection or sterile injury involves an adequate activation and recruitment of leukocytes. Activation of β2-integrins is required for neutrophil recruitment and is also mandatory for various neutrophil cell-intrinsic functions. Guanosine triphosphatases (GTPases) are key regulators of the actin cytoskeleton and are required for β2-integrin activation. Myosin-IXb (Myo9b), a Rho GTPase-activating protein, is essential for regulating Rho activity in neutrophils. Yet, the exact molecular mechanism through which Myo9b regulates β2-integrin activity and neutrophil recruitment into inflamed tissue is unknown. We demonstrate that Myo9b deficiency causes RhoA overactivation, increases actin cytoskeleton rearrangement in neutrophils, decreases neutrophil recruitment into the kidney, and improves kidney function in murine models of acute kidney injury. Loss of Myo9b also affects neutrophil effector functions and causes increased rolling velocity, decreased adhesion, impaired crawling, and strongly reduced transmigration of neutrophils in vivo. Mechanistically, Myo9b regulates RhoA activity, which is required for chemokine- and selectin-induced talin-1 recruitment to β2-integrins. Thus, Myo9b is a crucial regulator of important signaling pathways in neutrophils and is required for an adequate immune response triggered by chemokines and selectins.

1.
Kolaczkowska
E
,
Kubes
P
.
Neutrophil recruitment and function in health and inflammation
.
Nat Rev Immunol
.
2013
;
13
(
3
):
159
-
175
.
2.
Beyrau
M
,
Bodkin
JV
,
Nourshargh
S
.
Neutrophil heterogeneity in health and disease: a revitalized avenue in inflammation and immunity
.
Open Biol
.
2012
;
2
(
11
):
120134
.
3.
McDonald
B
,
Kubes
P
.
Neutrophils and intravascular immunity in the liver during infection and sterile inflammation
.
Toxicol Pathol
.
2012
;
40
(
2
):
157
-
165
.
4.
Wolf
M
,
Albrecht
S
,
Märki
C
.
Proteolytic processing of chemokines: Implications in physiological and pathological conditions
.
Int J Biochem Cell Biol
.
2008
;
40
(
6-7
):
1185
-
1198
.
5.
Zarbock
A
,
Schmolke
M
,
Bockhorn
SG
, et al
.
The Duffy antigen receptor for chemokines in acute renal failure: a facilitator of renal chemokine presentation
.
Crit Care Med
.
2007
;
35
(
9
):
2156
-
2163
.
6.
Henson
PM
.
Dampening inflammation
.
Nat Immunol
.
2005
;
6
(
12
):
1179
-
1181
.
7.
Salas
A
,
Shimaoka
M
,
Kogan
AN
,
Harwood
C
,
von Andrian
UH
,
Springer
TA
.
Rolling adhesion through an extended conformation of integrin alphaLbeta2 and relation to alpha I and beta I-like domain interaction
.
Immunity
.
2004
;
20
(
4
):
393
-
406
.
8.
Azzouz
D
,
Khan
MA
,
Palaniyar
N
.
ROS induces NETosis by oxidizing DNA and initiating DNA repair
.
Cell Death Discov
.
2021
;
7
(
1
):
113
.
9.
Brinkmann
V
,
Reichard
U
,
Goosmann
C
, et al
.
Neutrophil extracellular traps kill bacteria
.
Science
.
2004
;
303
(
5663
):
1532
-
1535
.
10.
Schmidt
S
,
Moser
M
,
Sperandio
M
.
The molecular basis of leukocyte recruitment and its deficiencies
.
Mol Immunol
.
2013
;
55
(
1
):
49
-
58
.
11.
Das
J
,
Sharma
A
,
Jindal
A
,
Aggarwal
V
,
Rawat
A
.
Leukocyte adhesion defect: where do we stand circa 2019?
.
Genes Dis
.
2020
;
7
(
1
):
107
-
114
.
12.
Kubes
P
.
The complexities of leukocyte recruitment
.
Semin Immunol
.
2002
;
14
(
2
):
65
-
72
.
13.
Zarbock
A
,
Ley
K
.
Mechanisms and consequences of neutrophil interaction with the endothelium
.
Am J Pathol
.
2008
;
172
(
1
):
1
-
7
.
14.
Zarbock
A
,
Ley
K
.
Neutrophil adhesion and activation under flow
.
Microcirculation
.
2009
;
16
(
1
):
31
-
42
.
15.
Herter
J
,
Zarbock
A
.
Integrin regulation during leukocyte recruitment
.
J Immunol
.
2013
;
190
(
9
):
4451
-
4457
.
16.
Ley
K
,
Laudanna
C
,
Cybulsky
MI
,
Nourshargh
S
.
Getting to the site of inflammation: the leukocyte adhesion cascade updated
.
Nat Rev Immunol
.
2007
;
7
(
9
):
678
-
689
.
17.
Smith
ML
,
Olson
TS
,
Ley
K
.
CXCR2- and E-selectin–induced neutrophil arrest during inflammation in vivo
.
J Exp Med
.
2004
;
200
(
7
):
935
-
939
.
18.
Zarbock
A
,
Ley
K
,
McEver
RP
,
Hidalgo
A
.
Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow
.
Blood
.
2011
;
118
(
26
):
6743
-
6751
.
19.
Kuwano
Y
,
Spelten
O
,
Zhang
H
,
Ley
K
,
Zarbock
A
.
Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils
.
Blood
.
2010
;
116
(
4
):
617
-
624
.
20.
Wen
L
,
Moser
M
,
Ley
K
.
Molecular mechanisms of leukocyte β2 integrin activation
.
Blood
.
2022
;
139
(
24
):
3480
-
3492
.
21.
Lefort
CT
,
Rossaint
J
,
Moser
M
, et al
.
Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation
.
Blood
.
2012
;
119
(
18
):
4275
-
4282
.
22.
Fan
Z
,
McArdle
S
,
Marki
A
, et al
.
Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis
.
Nat Commun
.
2016
;
7
(
1
):
12658
.
23.
Phillipson
M
,
Heit
B
,
Colarusso
P
,
Liu
L
,
Ballantyne
CM
,
Kubes
P
.
Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade
.
J Exp Med
.
2006
;
203
(
12
):
2569
-
2575
.
24.
Jaffe
AB
,
Hall
A
.
RHO GTPASES: biochemistry and biology
.
Annu Rev Cell Dev Biol
.
2005
;
21
(
1
):
247
-
269
.
25.
Heasman
SJ
,
Ridley
AJ
.
Mammalian Rho GTPases: new insights into their functions from in vivo studies
.
Nat Rev Mol Cell Biol
.
2008
;
9
(
9
):
690
-
701
.
26.
Margraf
A
,
Cappenberg
A
,
Vadillo
E
, et al
.
ArhGAP15, a RacGAP, acts as a temporal signaling regulator of Mac-1 affinity in sterile inflammation
.
J Immunol
.
2020
;
205
(
5
):
1365
-
1375
.
27.
Wirth
JA
,
Jensen
KA
,
Post
PL
,
Bement
WM
,
Mooseker
MS
.
Human myosin-IXb, an unconventional myosin with a chimerin-like rho/rac GTPase-activating protein domain in its tail
.
J Cell Sci
.
1996
;
109
(
Pt 3
):
653
-
661
.
28.
Kambara
T
,
Ikebe
M
.
A unique ATP hydrolysis mechanism of single-headed processive myosin, myosin IX
.
J Biol Chem
.
2006
;
281
(
8
):
4949
-
4957
.
29.
Nalavadi
V
,
Nyitrai
M
,
Bertolini
C
,
Adamek
N
,
Geeves
MA
,
Bähler
M
.
Kinetic mechanism of myosin IXB and the contributions of two class IX-specific regions [published correction appears in J Biol Chem. 2006;281(17):12196]
.
J Biol Chem
.
2005
;
280
(
47
):
38957
-
38968
.
30.
Bähler
M
.
Are class III and class IX myosins motorized signalling molecules?
.
Biochim Biophys Acta
.
2000
;
1496
(
1
):
52
-
59
.
31.
Hanley
PJ
,
Xu
Y
,
Kronlage
M
, et al
.
Motorized RhoGAP myosin IXb (Myo9b) controls cell shape and motility
.
Proc Natl Acad Sci
.
2010
;
107
(
27
):
12145
-
12150
.
32.
Kemppinen
A
,
Suvela
M
,
Tienari
PJ
, et al
.
MYO9B polymorphisms in multiple sclerosis
.
Eur J Hum Genet
.
2009
;
17
(
6
):
840
-
843
.
33.
Zeng
R
,
Lv
X
,
Liu
G
, et al
.
The correlation between MYO9B gene polymorphism and inflammatory bowel disease in the Guangxi Zhuang population
.
Int J Gen Med
.
2021
;
14
:
9163
-
9172
.
34.
Zhang
J
,
Zou
Y
,
Chen
L
, et al
.
Myo9b mutations are associated with altered dendritic cell functions and increased susceptibility to autoimmune diabetes onset
.
Nat Commun
.
2023
;
14
(
1
):
5977
.
35.
Königs
V
,
Jennings
R
,
Vogl
T
, et al
.
Mouse macrophages completely lacking Rho subfamily GTPases (RhoA, RhoB, and RhoC) have severe lamellipodial retraction defects, but robust chemotactic navigation and altered motility
.
J Biol Chem
.
2014
;
289
(
44
):
30772
-
30784
.
36.
Cipriani
S
,
Guerrero-Valero
M
,
Tozza
S
, et al
.
Mutations in MYO9B are associated with Charcot–Marie–Tooth disease type 2 neuropathies and isolated optic atrophy
.
Eur J Neurol
.
2023
;
30
(
2
):
511
-
526
.
37.
Liu
Z
,
Xu
Y
,
Zhang
X
,
Song
J
,
Sorokin
L
,
Bähler
M
.
The motorized RhoGAP myosin IXb (Myo9b) in leukocytes regulates experimental autoimmune encephalomyelitis induction and recovery
.
J Neuroimmunol
.
2015
;
282
:
25
-
32
.
38.
Block
H
,
Herter
JM
,
Rossaint
J
, et al
.
Crucial role of SLP-76 and ADAP for neutrophil recruitment in mouse kidney ischemia-reperfusion injury
.
J Exp Med
.
2012
;
209
(
2
):
407
-
421
.
39.
Rittirsch
D
,
Huber-Lang
MS
,
Flierl
MA
,
Ward
PA
.
Immunodesign of experimental sepsis by cecal ligation and puncture
.
Nat Protoc
.
2009
;
4
(
1
):
31
-
36
.
40.
Zarbock
A
,
Lowell
CA
,
Ley
K
.
Spleen tyrosine kinase Syk is necessary for E-selectin-induced alpha(L)beta(2) integrin-mediated rolling on intercellular adhesion molecule-1
.
Immunity
.
2007
;
26
(
6
):
773
-
783
.
41.
Zarbock
A
,
Abram
CL
,
Hundt
M
,
Altman
A
,
Lowell
CA
,
Ley
K
.
PSGL-1 engagement by E-selectin signals through Src kinase Fgr and ITAM adapters DAP12 and FcRγ to induce slow leukocyte rolling
.
J Exp Med
.
2008
;
205
(
10
):
2339
-
2347
.
42.
Kempf
T
,
Zarbock
A
,
Widera
C
, et al
.
GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice
.
Nat Med
.
2011
;
17
(
5
):
581
-
588
.
43.
Mueller
H
,
Stadtmann
A
,
Van Aken
H
, et al
.
Tyrosine kinase Btk regulates E-selectin–mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) gamma2 and PI3Kgamma pathways
.
Blood
.
2010
;
115
(
15
):
3118
-
3127
.
44.
Bixel
MG
,
Li
H
,
Petri
B
, et al
.
CD99 and CD99L2 act at the same site as, but independently of, PECAM-1 during leukocyte diapedesis
.
Blood
.
2010
;
116
(
7
):
1172
-
1184
.
45.
Schulte
D
,
Küppers
V
,
Dartsch
N
, et al
.
Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability: Necessity of paracellular diapedesis in vivo
.
EMBO J
.
2011
;
30
(
20
):
4157
-
4170
.
46.
Yago
T
,
Shao
B
,
Miner
JJ
, et al
.
E-selectin engages PSGL-1 and CD44 through a common signaling pathway to induce integrin alphaLbeta2-mediated slow leukocyte rolling
.
Blood
.
2010
;
116
(
3
):
485
-
494
.
47.
Stadtmann
A
,
Brinkhaus
L
,
Mueller
H
, et al
.
Rap1a activation by CalDAG-GEFI and p38 MAPK is involved in E-selectin-dependent slow leukocyte rolling
.
Eur J Immunol
.
2011
;
41
(
7
):
2074
-
2085
.
48.
Herter
JM
,
Rossaint
J
,
Block
H
,
Welch
H
,
Zarbock
A
.
Integrin activation by P-Rex1 is required for selectin-mediated slow leukocyte rolling and intravascular crawling
.
Blood
.
2013
;
121
(
12
):
2301
-
2310
.
49.
Clemens
RA
,
Chong
J
,
Grimes
D
,
Hu
Y
,
Lowell
CA
.
STIM1 and STIM2 cooperatively regulate mouse neutrophil store-operated calcium entry and cytokine production
.
Blood
.
2017
;
130
(
13
):
1565
-
1577
.
50.
Boras
M
,
Volmering
S
,
Bokemeyer
A
, et al
.
Skap2 is required for β2 integrin–mediated neutrophil recruitment and functions
.
J Exp Med
.
2017
;
214
(
3
):
851
-
874
.
51.
Rübig
E
,
Stypmann
J
,
Van Slyke
P
, et al
.
The synthetic Tie2 agonist peptide vasculotide protects renal vascular barrier function in experimental acute kidney injury
.
Sci Rep
.
2016
;
6
(
1
):
22111
.
52.
Zarbock
A
,
Deem
TL
,
Burcin
TL
,
Ley
K
.
Galphai2 is required for chemokine-induced neutrophil arrest
.
Blood
.
2007
;
110
(
10
):
3773
-
3779
.
53.
Ittner
A
,
Block
H
,
Reichel
CA
, et al
.
Regulation of PTEN activity by p38δ-PKD1 signaling in neutrophils confers inflammatory responses in the lung
.
J Exp Med
.
2012
;
209
(
12
):
2229
-
2246
.
54.
Luo
B-H
,
Carman
CV
,
Springer
TA
.
Structural basis of integrin regulation and signaling
.
Annu Rev Immunol
.
2007
;
25
(
1
):
619
-
647
.
55.
Altieri
DC
,
Agbanyo
FR
,
Plescia
J
,
Ginsberg
MH
,
Edgington
TS
,
Plow
EF
.
A unique recognition site mediates the interaction of fibrinogen with the leukocyte integrin Mac-1 (CD11b/CD18)
.
J Biol Chem
.
1990
;
265
(
21
):
12119
-
12122
.
56.
Bolomini-Vittori
M
,
Montresor
A
,
Giagulli
C
, et al
.
Regulation of conformer-specific activation of the integrin LFA-1 by a chemokine-triggered Rho signaling module
.
Nat Immunol
.
2009
;
10
(
2
):
185
-
194
.
57.
Clemens
RA
,
Lowell
CA
.
Store-operated calcium signaling in neutrophils
.
J Leukoc Biol
.
2015
;
98
(
4
):
497
-
502
.
58.
Clemens
RA
,
Lowell
CA
.
CRAC channel regulation of innate immune cells in health and disease
.
Cell Calcium
.
2019
;
78
:
56
-
65
.
59.
Berzat
A
,
Hall
A
.
Cellular responses to extracellular guidance cues
.
EMBO J
.
2010
;
29
(
16
):
2734
-
2745
.
60.
Wales
P
,
Schuberth
CE
,
Aufschnaiter
R
, et al
.
Calcium-mediated actin reset (CaAR) mediates acute cell adaptations
.
eLife
.
2016
;
5
:
e19850
.
61.
Struchholz
S
,
Elfrink
K
,
Pieper
U
, et al
.
Functional role of the extended loop 2 in the myosin 9b head for binding F-actin
.
J Biol Chem
.
2009
;
284
(
6
):
3663
-
3671
.
62.
Van Den Boom
F
,
Düssmann
H
,
Uhlenbrock
K
,
Abouhamed
M
,
Bähler
M
.
The myosin IXb motor activity targets the myosin IXb RhoGAP domain as cargo to sites of actin polymerization
.
Mol Biol Cell
.
2007
;
18
(
4
):
1507
-
1518
.
63.
Hanley
PJ
,
Vollmer
V
,
Bähler
M
.
Class IX myosins: motorized RhoGAP signaling molecules
.
Myosins
.
2020
;
1239
:
381
-
389
.
64.
Zarbock
A
,
Ley
K
.
Protein tyrosine kinases in neutrophil activation and recruitment
.
Arch Biochem Biophys
.
2011
;
510
(
2
):
112
-
119
.
65.
Moser
M
,
Legate
KR
,
Zent
R
,
Fässler
R
.
The tail of integrins, talin, and kindlins
.
Science
.
2009
;
324
(
5929
):
895
-
899
.
66.
Shattil
SJ
,
Kim
C
,
Ginsberg
MH
.
The final steps of integrin activation: the end game
.
Nat Rev Mol Cell Biol
.
2010
;
11
(
4
):
288
-
300
.
67.
Hegan
PS
,
Chandhoke
SK
,
Barone
C
,
Egan
M
,
Bähler
M
,
Mooseker
MS
.
Mice lacking myosin IXb, an inflammatory bowel disease susceptibility gene, have impaired intestinal barrier function and superficial ulceration in the ileum
.
Cytoskeleton
.
2016
;
73
(
4
):
163
-
179
.
68.
Williams
GW
,
Berg
NK
,
Reskallah
A
,
Yuan
X
,
Eltzschig
HK
.
Acute respiratory distress syndrome
.
Anesthesiology
.
2021
;
134
(
2
):
270
-
282
.
69.
Eltzschig
HK
,
Carmeliet
P
.
Hypoxia and inflammation
.
N Engl J Med
.
2011
;
364
(
7
):
656
-
665
.
70.
Yuan
X
,
Lee
JW
,
Bowser
JL
,
Neudecker
V
,
Sridhar
S
,
Eltzschig
HK
.
Targeting hypoxia signaling for perioperative organ injury
.
Anesth Analg
.
2018
;
126
(
1
):
308
-
321
.
71.
Sormendi
S
,
Deygas
M
,
Sinha
A
, et al
.
HIF2α is a direct regulator of neutrophil motility
.
Blood
.
2021
;
137
(
24
):
3416
-
3427
.
72.
Khawaja
AA
,
Chong
DLW
,
Sahota
J
, et al
.
Identification of a novel HIF-1α-αMβ2 integrin-NET axis in fibrotic interstitial lung disease
.
Front Immunol
.
2020
;
11
:
2190
.
73.
Moalli
F
,
Ficht
X
,
Germann
P
, et al
.
The Rho regulator myosin IXb enables nonlymphoid tissue seeding of protective CD8+ T cells
.
J Exp Med
.
2018
;
215
(
7
):
1869
-
1890
.
74.
Fine
N
,
Dimitriou
ID
,
Rullo
J
, et al
.
GEF-H1 is necessary for neutrophil shear stress-induced migration during inflammation
.
J Cell Biol
.
2016
;
215
(
1
):
107
-
119
.
75.
Xu
J
,
Wang
F
,
Van Keymeulen
A
, et al
.
Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils
.
Cell
.
2003
;
114
(
2
):
201
-
214
.
76.
Bros
M
,
Haas
K
,
Moll
L
,
Grabbe
S
.
RhoA as a key regulator of innate and adaptive immunity
.
Cells
.
2019
;
8
(
7
):
733
.
77.
Dixit
N
,
Kim
M-H
,
Rossaint
J
,
Yamayoshi
I
,
Zarbock
A
,
Simon
SI
.
Leukocyte function antigen-1, kindlin-3, and calcium flux orchestrate neutrophil recruitment during inflammation
.
J Immunol
.
2012
;
189
(
12
):
5954
-
5964
.
78.
Dixit
N
,
Yamayoshi
I
,
Nazarian
A
,
Simon
SI
.
Migrational guidance of neutrophils is mechanotransduced via high-affinity LFA-1 and calcium flux
.
J Immunol
.
2011
;
187
(
1
):
472
-
481
.
79.
Saci
A
,
Carpenter
CL
.
RhoA GTPase regulates B cell receptor signaling
.
Mol Cell
.
2005
;
17
(
2
):
205
-
214
.
80.
Zhu
L
,
Qi
X-Y
,
Aoudjit
L
, et al
.
Nuclear factor of activated T cells mediates RhoA-induced fibronectin upregulation in glomerular podocytes
.
Am J Physiol Ren Physiol
.
2013
;
304
(
7
):
F849
-
F862
.
81.
Vadillo
E
,
Chánez-Paredes
S
,
Vargas-Robles
H
, et al
.
Intermittent rolling is a defect of the extravasation cascade caused by myosin1e-deficiency in neutrophils
.
Proc Natl Acad Sci
.
2019
;
116
(
52
):
26752
-
26758
.
82.
McConnell
RE
,
Tyska
MJ
.
Leveraging the membrane – cytoskeleton interface with myosin-1
.
Trends Cell Biol
.
2010
;
20
(
7
):
418
-
426
.
83.
Rajasekharan
S
,
Baker
KA
,
Horn
KE
,
Jarjour
AA
,
Antel
JP
,
Kennedy
TE
.
Netrin 1 and Dcc regulate oligodendrocyte process branching and membrane extension via Fyn and RhoA
.
Dev Camb Engl
.
2009
;
136
(
3
):
415
-
426
.
84.
Ly
NP
,
Komatsuzaki
K
,
Fraser
IP
, et al
.
Netrin-1 inhibits leukocyte migration in vitro and in vivo
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
41
):
14729
-
14734
.
85.
Yuan
X
,
Mills
T
,
Doursout
M-F
,
Evans
SE
,
Vidal Melo
MF
,
Eltzschig
HK
.
Alternative adenosine receptor activation: the netrin-Adora2b link
.
Front Pharmacol
.
2022
;
13
:
944994
.
86.
Boneschansker
L
,
Nakayama
H
,
Eisenga
M
, et al
.
Netrin-1 augments chemokinesis in CD4+ T cells in vitro and elicits a proinflammatory response in vivo
.
J Immunol
.
2016
;
197
(
4
):
1389
-
1398
.
87.
Mediero
A
,
Ramkhelawon
B
,
Wilder
T
, et al
.
Netrin-1 is highly expressed and required in inflammatory infiltrates in wear particle-induced osteolysis
.
Ann Rheum Dis
.
2016
;
75
(
9
):
1706
-
1713
.
88.
Bergmeier
W
,
Goerge
T
,
Wang
H-W
, et al
.
Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III
.
J Clin Invest
.
2007
;
117
(
6
):
1699
-
1707
.
89.
Miner
JJ
,
Xia
L
,
Yago
T
, et al
.
Separable requirements for cytoplasmic domain of PSGL-1 in leukocyte rolling and signaling under flow
.
Blood
.
2008
;
112
(
5
):
2035
-
2045
.
90.
Abram
CL
,
Lowell
CA
.
The ins and outs of leukocyte integrin signaling
.
Annu Rev Immunol
.
2009
;
27
(
1
):
339
-
362
.
91.
Anderson
SI
,
Hotchin
NA
,
Nash
GB
.
Role of the cytoskeleton in rapid activation of CD11b/CD18 function and its subsequent downregulation in neutrophils
.
J Cell Sci
.
2000
;
113
(
Pt 15
):
2737
-
2745
.
92.
Gambardella
L
,
Anderson
KE
,
Jakus
Z
, et al
.
Phosphoinositide 3-OH kinase regulates integrin-dependent processes in neutrophils by signaling through its effector ARAP3
.
J Immunol
.
2013
;
190
(
1
):
381
-
391
.
93.
Murao
A
,
Arif
A
,
Brenner
M
, et al
.
Extracellular CIRP and TREM-1 axis promotes ICAM-1-Rho-mediated NETosis in sepsis
.
FASEB J
.
2020
;
34
(
7
):
9771
-
9786
.
94.
Damascena
HL
,
Silveira
WAA
,
Castro
MS
,
Fontes
W
.
Neutrophil activated by the famous and potent PMA (phorbol myristate acetate)
.
Cells
.
2022
;
11
(
18
):
2889
.
95.
Tan
C
,
Aziz
M
,
Wang
P
.
The vitals of NETs
.
J Leukoc Biol
.
2021
;
110
(
4
):
797
-
808
.
96.
Aziz
M
,
Brenner
M
,
Wang
P
.
Extracellular CIRP (eCIRP) and inflammation
.
J Leukoc Biol
.
2019
;
106
(
1
):
133
-
146
.
97.
Neubert
E
,
Meyer
D
,
Rocca
F
, et al
.
Chromatin swelling drives neutrophil extracellular trap release
.
Nat Commun
.
2018
;
9
(
1
):
3767
.
98.
Thiam
HR
,
Wong
SL
,
Qiu
R
, et al
.
NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture
.
Proc Natl Acad Sci
.
2020
;
117
(
13
):
7326
-
7337
.
99.
Sprenkeler
EGG
,
Tool
ATJ
,
Henriet
SSV
,
van Bruggen
R
,
Kuijpers
TW
.
Formation of neutrophil extracellular traps requires actin cytoskeleton rearrangements
.
Blood
.
2022
;
139
(
21
):
3166
-
3180
.
100.
Mannherz
HG
,
Budde
H
,
Jarkas
M
, et al
.
Reorganization of the actin cytoskeleton during the formation of neutrophil extracellular traps (NETs)
.
Eur J Cell Biol
.
2024
;
103
(
2
):
151407
.
You do not currently have access to this content.
Sign in via your Institution