• The genetic subtypes of cHL are driven more by mechanisms of genetic instability than by clustering of mutations into functional groups.

  • Noncoding mutations of BCL6, whole genome duplication, and neoantigens are involved in shaping the pathophysiology and outcome of cHL.

Abstract

This study analyzed the genetics of classic Hodgkin lymphoma (cHL) by using circulating tumor DNA (ctDNA). Two genetic subtypes were identified, differing in genetic instability mechanisms: one subtype (64% of cases) showed a higher mutation load and a higher fraction of mutations associated with activation-induced cytidine deaminase and microsatellite instability signatures, whereas the other subtype (36% of cases) exhibited chromosomal instability with more somatic copy number alterations. Whole-genome duplication was more common in cHL compared with other B-cell tumors and emerged as a prognostic biomarker for patients undergoing Adriamycin (doxorubicin)-bleomycin-vinblastine-dacarbazine–based therapy. Noncoding regulatory mutations, similar to those in diffuse large B-cell lymphoma, were highly prevalent in 86% of cHL. A recurrent somatic expression quantitative trait locus (seQTL) involving the BCL6 gene was found in 30% of cases. The seQTL of BCL6 aligned with accessible chromatin and increased H3K27 acetylation in cHL, disrupted PRDM1 binding, and co-occurred with BCL6 expression in cHL cells. Weak to strong expression of BCL6 was observed in 68% of cases, and BCL6 expression associated with gene repression similarly in cHL and germinal center B cells. After BCL6 degradation, the core set of genes directly bound and regulated by BCL6 was derepressed in cHL, and proliferation was impaired. The number and clonality of neoantigens was associated with tumor microenvironment type and response to checkpoint blockade. Finally, ctDNA analysis was suggested as a tool to distinguish ambiguous positron emission tomography/computed tomography–positive lesions after treatment.

1.
Tiacci
E
,
Ladewig
E
,
Schiavoni
G
, et al
.
Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma
.
Blood
.
2018
;
131
(
22
):
2454
-
2465
.
2.
Reichel
J
,
Chadburn
A
,
Rubinstein
PG
, et al
.
Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells
.
Blood
.
2015
;
125
(
7
):
1061
-
1072
.
3.
Wienand
K
,
Chapuy
B
,
Stewart
C
, et al
.
Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion
.
Blood Adv
.
2019
;
3
(
23
):
4065
-
4080
.
4.
Maura
F
,
Ziccheddu
B
,
Xiang
JZ
, et al
.
Molecular evolution of classic Hodgkin lymphoma revealed through whole-genome sequencing of Hodgkin and Reed Sternberg cells
.
Blood Cancer Discov
.
2023
;
4
(
3
):
208
-
227
.
5.
Alig
SK
,
Shahrokh Esfahani
M
,
Garofalo
A
, et al
.
Distinct Hodgkin lymphoma subtypes defined by noninvasive genomic profiling
.
Nature
.
2024
;
625
(
7996
):
778
-
787
.
6.
Gomez
F
,
Fisk
B
,
McMichael
JF
, et al
.
Ultra-deep sequencing reveals the mutational landscape of classical Hodgkin lymphoma
.
Cancer Res Commun
.
2023
;
3
(
11
):
2312
-
2330
.
7.
Heger
JM
,
Mammadova
L
,
Mattlener
J
, et al
.
Circulating tumor DNA sequencing for biologic classification and individualized risk stratification in patients with Hodgkin lymphoma
.
J Clin Oncol
.
2024
;
42
(
35
):
4218
-
4230
.
8.
Spina
V
,
Bruscaggin
A
,
Cuccaro
A
, et al
.
Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma
.
Blood
.
2018
;
131
(
22
):
2413
-
2425
.
9.
Desch
AK
,
Hartung
K
,
Botzen
A
, et al
.
Genotyping circulating tumor DNA of pediatric Hodgkin lymphoma
.
Leukemia
.
2020
;
34
(
1
):
151
-
166
.
10.
Sobesky
S
,
Mammadova
L
,
Cirillo
M
, et al
.
In-depth cell-free DNA sequencing reveals genomic landscape of Hodgkin's lymphoma and facilitates ultrasensitive residual disease detection
.
Med
.
2021
;
2
(
10
):
1171
-
1193.e11
.
11.
Buedts
L
,
Wlodarska
I
,
Finalet-Ferreiro
J
, et al
.
The landscape of copy number variations in classical Hodgkin lymphoma: a joint KU Leuven and LYSA study on cell-free DNA
.
Blood Adv
.
2021
;
5
(
7
):
1991
-
2002
.
12.
Camus
V
,
Viennot
M
,
Lequesne
J
, et al
.
Targeted genotyping of circulating tumor DNA for classical Hodgkin lymphoma monitoring: a prospective study
.
Haematologica
.
2021
;
106
(
1
):
154
-
162
.
13.
Vandenberghe
P
,
Wlodarska
I
,
Tousseyn
T
, et al
.
Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin's lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study
.
Lancet Haematol
.
2015
;
2
(
2
):
e55
-
e65
.
14.
Bal
E
,
Kumar
R
,
Hadigol
M
, et al
.
Super-enhancer hypermutation alters oncogene expression in B cell lymphoma
.
Nature
.
2022
;
607
(
7920
):
808
-
815
.
15.
Shanbhag
S
,
Ambinder
RF
.
Hodgkin lymphoma: a review and update on recent progress
.
CA Cancer J Clin
.
2018
;
68
(
2
):
116
-
132
.
16.
de Vries
S
,
Schaapveld
M
,
Janus
CPM
, et al
.
Long-term cause-specific mortality in Hodgkin lymphoma patients
.
J Natl Cancer Inst
.
2021
;
113
(
6
):
760
-
769
.
17.
Eichenauer
DA
,
Aleman
BMP
,
André
M
, et al
.
Hodgkin lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up
.
Ann Oncol
.
2018
;
29
(
suppl 4
):
iv19
-
iv29
.
18.
Adams
HJA
,
Kwee
TC
.
Proportion of false-positive lesions at interim and end-of-treatment FDG-PET in lymphoma as determined by histology: systematic review and meta-analysis
.
Eur J Radiol
.
2016
;
85
(
11
):
1963
-
1970
.
19.
Barrington
SF
,
Zwezerijnen
B
,
de Vet
HCW
, et al
.
Automated segmentation of baseline metabolic total tumor burden in diffuse large B-cell lymphoma: which method is most successful? a study on behalf of the PETRA consortium
.
J Nucl Med
.
2021
;
62
(
3
):
332
-
337
.
20.
Cheson
BD
,
Fisher
RI
,
Barrington
SF
, et al
.
Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification
.
J Clin Oncol
.
2014
;
32
(
27
):
3059
-
3068
.
21.
Pasqualucci
L
,
Neumeister
P
,
Goossens
T
, et al
.
Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas
.
Nature
.
2001
;
412
(
6844
):
341
-
346
.
22.
Khodabakhshi
AH
,
Morin
RD
,
Fejes
AP
, et al
.
Recurrent targets of aberrant somatic hypermutation in lymphoma
.
Oncotarget
.
2012
;
3
(
11
):
1308
-
1319
.
23.
Hübschmann
D
,
Kleinheinz
K
,
Wagener
R
, et al
.
Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas
.
Leukemia
.
2021
;
35
(
7
):
2002
-
2016
.
24.
Bruscaggin
A
,
Pini
K
,
Rossi
D
.
Detection of circulating tumor DNA in lymphoma patients
.
Methods Mol Biol
.
2025
;
2865
:
475
-
490
.
25.
Bruscaggin
A
,
di Bergamo
LT
,
Spina
V
, et al
.
Circulating tumor DNA for comprehensive noninvasive monitoring of lymphoma treated with ibrutinib plus nivolumab
.
Blood Adv
.
2021
;
5
(
22
):
4674
-
4685
.
26.
Talevich
E
,
Shain
AH
,
Botton
T
,
Bastian
BC
.
CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing
.
PLoS Comput Biol
.
2016
;
12
(
4
):
e1004873
.
27.
Rothwell
DG
,
Ayub
M
,
Cook
N
, et al
.
Utility of ctDNA to support patient selection for early phase clinical trials: the TARGET study
.
Nat Med
.
2019
;
25
(
5
):
738
-
743
.
28.
Esfahani
MS
,
Hamilton
EG
,
Mehrmohamadi
M
, et al
.
Inferring gene expression from cell-free DNA fragmentation profiles
.
Nat Biotechnol
.
2022
;
40
(
4
):
585
-
597
.
29.
Hu
ZY
,
Tang
Y
,
Liu
L
, et al
.
Subtyping of metastatic breast cancer based on plasma circulating tumor DNA alterations: an observational, multicentre platform study
.
EClinicalMedicine
.
2022
;
51
:
101567
.
30.
Lapin
M
,
Edland
KH
,
Tjensvoll
K
, et al
.
Comprehensive ctDNA measurements improve prediction of clinical outcomes and enable dynamic tracking of disease progression in advanced pancreatic cancer
.
Clin Cancer Res
.
2023
;
29
(
7
):
1267
-
1278
.
31.
Adalsteinsson
VA
,
Ha
G
,
Freeman
SS
, et al
.
Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors
.
Nat Commun
.
2017
;
8
(
1
):
1324
.
32.
Cheson
BD
,
Pfistner
B
,
Juweid
ME
, et al
.
Revised response criteria for malignant lymphoma
.
J Clin Oncol
.
2007
;
25
(
5
):
579
-
586
.
33.
Kanakry
JA
,
Li
H
,
Gellert
LL
, et al
.
Plasma Epstein-Barr virus DNA predicts outcome in advanced Hodgkin lymphoma: correlative analysis from a large North American cooperative group trial
.
Blood
.
2013
;
121
(
18
):
3547
-
3553
.
34.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
35.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes
.
Nat Med
.
2018
;
24
(
5
):
679
-
690
.
36.
Han
X
,
Zhang
S
,
Zhou
DC
, et al
.
MSIsensor-ct: microsatellite instability detection using cfDNA sequencing data
.
Brief Bioinform
.
2021
;
22
(
5
):
bbaa402
.
37.
Basso
K
,
Saito
M
,
Sumazin
P
, et al
.
Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells
.
Blood
.
2010
;
115
(
5
):
975
-
984
.
38.
Steidl
C
,
Diepstra
A
,
Lee
T
, et al
.
Gene expression profiling of microdissected Hodgkin Reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma
.
Blood
.
2012
;
120
(
17
):
3530
-
3540
.
39.
Słabicki
M
,
Yoon
H
,
Koeppel
J
, et al
.
Small-molecule-induced polymerization triggers degradation of BCL6
.
Nature
.
2020
;
588
(
7836
):
164
-
168
.
40.
Kerres
N
,
Steurer
S
,
Schlager
S
, et al
.
Chemically induced degradation of the oncogenic transcription factor BCL6
.
Cell Rep
.
2017
;
20
(
12
):
2860
-
2875
.
41.
Haber
MM
,
Liu
J
,
Knowles
DM
,
Inghirami
G
.
Determination of the DNA content of the Reed-Sternberg cell of Hodgkin's disease by image analysis
.
Blood
.
1992
;
80
(
11
):
2851
-
2857
.
42.
Bielski
CM
,
Zehir
A
,
Penson
AV
, et al
.
Genome doubling shapes the evolution and prognosis of advanced cancers
.
Nat Genet
.
2018
;
50
(
8
):
1189
-
1195
.
43.
Zeng
J
,
Hills
SA
,
Ozono
E
,
Diffley
JFX
.
Cyclin E-induced replicative stress drives p53-dependent whole-genome duplication
.
Cell
.
2023
;
186
(
3
):
528
-
542.e14
.
44.
Hartmann
S
,
Martin-Subero
JI
,
Gesk
S
, et al
.
Detection of genomic imbalances in microdissected Hodgkin and Reed-Sternberg cells of classical Hodgkin's lymphoma by array-based comparative genomic hybridization
.
Haematologica
.
2008
;
93
(
9
):
1318
-
1326
.
45.
Slovak
ML
,
Bedell
V
,
Hsu
YH
, et al
.
Molecular karyotypes of Hodgkin and Reed-Sternberg cells at disease onset reveal distinct copy number alterations in chemosensitive versus refractory Hodgkin lymphoma
.
Clin Cancer Res
.
2011
;
17
(
10
):
3443
-
3454
.
46.
Roberts
SA
,
Gordenin
DA
.
Hypermutation in human cancer genomes: footprints and mechanisms
.
Nat Rev Cancer
.
2014
;
14
(
12
):
786
-
800
.
47.
Kotlov
N
,
Bagaev
A
,
Revuelta
MV
, et al
.
Clinical and biological subtypes of B-cell lymphoma revealed by microenvironmental signatures
.
Cancer Discov
.
2021
;
11
(
6
):
1468
-
1489
.
48.
Steidl
C
,
Lee
T
,
Shah
SP
, et al
.
Tumor-associated macrophages and survival in classic Hodgkin's lymphoma
.
N Engl J Med
.
2010
;
362
(
10
):
875
-
885
.
49.
Steen
CB
,
Liu
CL
,
Alizadeh
AA
,
Newman
AM
.
Profiling cell type abundance and expression in bulk tissues with CIBERSORTx
.
Methods Mol Biol
.
2020
;
2117
:
135
-
157
.
50.
Fangazio
M
,
Ladewig
E
,
Gomez
K
, et al
.
Genetic mechanisms of HLA-I loss and immune escape in diffuse large B cell lymphoma
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
22
):
e2104504118
.
51.
Gubin
MM
,
Vesely
MD
.
Cancer immunoediting in the era of immuno-oncology
.
Clin Cancer Res
.
2022
;
28
(
18
):
3917
-
3928
.
52.
O'Donnell
JS
,
Teng
MWL
,
Smyth
MJ
.
Cancer immunoediting and resistance to T cell-based immunotherapy
.
Nat Rev Clin Oncol
.
2019
;
16
(
3
):
151
-
167
.
53.
Aoki
T
,
Chong
LC
,
Takata
K
, et al
.
Single-cell profiling reveals the importance of CXCL13/CXCR5 axis biology in lymphocyte-rich classic Hodgkin lymphoma
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
41
):
e2105822118
.
54.
Cohen Shvefel
S
,
Pai
JA
,
Cao
Y
, et al
.
Temporal genomic analysis of homogeneous tumor models reveals key regulators of immune evasion in melanoma
.
Cancer Discov
.
2025
;
15
(
3
):
553
-
577
.
55.
Andor
N
,
Graham
TA
,
Jansen
M
, et al
.
Pan-cancer analysis of the extent and consequences of intratumor heterogeneity
.
Nat Med
.
2016
;
22
(
1
):
105
-
113
.
56.
Sugawara
T
,
Miya
F
,
Ishikawa
T
, et al
.
Immune subtypes and neoantigen-related immune evasion in advanced colorectal cancer
.
iScience
.
2022
;
25
(
2
):
103740
.
57.
McGranahan
N
,
Furness
AJ
,
Rosenthal
R
, et al
.
Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade
.
Science
.
2016
;
351
(
6280
):
1463
-
1469
.
58.
Kurtz
DM
,
Scherer
F
,
Jin
MC
, et al
.
Circulating tumor DNA measurements as early outcome predictors in diffuse large B-cell lymphoma
.
J Clin Oncol
.
2018
;
36
(
28
):
2845
-
2853
.
59.
Kurtz
DM
,
Soo
J
,
Co Ting Keh
L
, et al
.
Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA
.
Nat Biotechnol
.
2021
;
39
(
12
):
1537
-
1547
.
60.
Morin
RD
,
Arthur
SE
,
Hodson
DJ
.
Molecular profiling in diffuse large B-cell lymphoma: why so many types of subtypes?
.
Br J Haematol
.
2022
;
196
(
4
):
814
-
829
.
61.
Müller
MF
,
Ibrahim
AE
,
Arends
MJ
.
Molecular pathological classification of colorectal cancer
.
Virchows Arch
.
2016
;
469
(
2
):
125
-
134
.
62.
Cuceu
C
,
Colicchio
B
,
Jeandidier
E
, et al
.
Independent mechanisms lead to genomic instability in Hodgkin lymphoma: microsatellite or chromosomal instability (dagger)
.
Cancers (Basel)
.
2018
;
10
(
7
):
233
.
63.
Weniger
MA
,
Küppers
R
.
Molecular biology of Hodgkin lymphoma
.
Leukemia
.
2021
;
35
(
4
):
968
-
981
.
64.
Tiacci
E
,
Döring
C
,
Brune
V
, et al
.
Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma
.
Blood
.
2012
;
120
(
23
):
4609
-
4620
.
65.
Basso
K
,
Dalla-Favera
R
.
Germinal centres and B cell lymphomagenesis
.
Nat Rev Immunol
.
2015
;
15
(
3
):
172
-
184
.
66.
Hoeller
S
,
Zihler
D
,
Zlobec
I
, et al
.
BOB.1, CD79a and cyclin E are the most appropriate markers to discriminate classical Hodgkin's lymphoma from primary mediastinal large B-cell lymphoma
.
Histopathology
.
2010
;
56
(
2
):
217
-
228
.
67.
Tzankov
A
,
Zimpfer
A
,
Lugli
A
, et al
.
High-throughput tissue microarray analysis of G1-cyclin alterations in classical Hodgkin's lymphoma indicates overexpression of cyclin E1
.
J Pathol
.
2003
;
199
(
2
):
201
-
207
.
68.
Rengstl
B
,
Newrzela
S
,
Heinrich
T
, et al
.
Incomplete cytokinesis and re-fusion of small mononucleated Hodgkin cells lead to giant multinucleated Reed-Sternberg cells
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
51
):
20729
-
20734
.
69.
Dietrich
C
,
Trub
A
,
Ahn
A
, et al
.
INX-315, a selective CDK2 inhibitor, induces cell cycle arrest and senescence in solid tumors
.
Cancer Discov
.
2024
;
14
(
3
):
446
-
467
.
You do not currently have access to this content.
Sign in via your Institution