• Among NCI high-risk patients, 93% with ETV6::RUNX1 and 54% with hyperdiploid B-ALL had excellent outcomes with low-intensity therapy.

  • NCI high-risk patients with hyperdiploid B-ALL and slow early MRD response had worse outcomes and, therefore, require new approaches.

Abstract

Children with ETV6::RUNX1 or high-hyperdiploid B-cell acute lymphoblastic leukemia (B-ALL) have favorable outcomes. The St. Jude (SJ) classification considers these patients low risk, regardless of their National Cancer Institute (NCI) risk classification, except when there is slow minimal residual disease (MRD) response or central nervous system/testicular involvement. We analyzed outcomes in children (aged 1-18.99 years) with these genotypes in the SJ Total XV/XVI studies (2000-2017). Patients with ETV6::RUNX1 (n = 222) or high-hyperdiploid (n = 296) B-ALL had 5-year event-free survival (EFS) of 97.7% ± 1.1% and 94.7% ± 1.4%, respectively. For ETV6::RUNX1, EFS was comparable between NCI standard-risk and high-risk patients and between SJ low-risk and standard-risk patients. Of the 40 NCI high-risk patients, 37 who received SJ low-risk therapy had excellent EFS (97.3% ± 2.8%). For high-hyperdiploid B-ALL, NCI high-risk patients had worse EFS than standard-risk patients (87.6% ± 4.5% vs 96.4% ± 1.3%; P = .016). EFS was similar for NCI standard-risk and high-risk patients classified as SJ low risk (96.0% ± 1.5% and 96.9% ± 3.2%; P = .719). However, EFS was worse for NCI high-risk patients than for NCI standard-risk patients receiving SJ standard/high-risk therapy (77.4% ± 8.2% vs 98.0% ± 2.2%; P = .004). NCI high-risk patients with ETV6::RUNX1 or high-hyperdiploid B-ALL who received SJ low-risk therapy had lower incidences of thrombosis (P = .013) and pancreatitis (P = .011) than those who received SJ standard/high-risk therapy. MRD-directed therapy yielded excellent outcomes, except for NCI high-risk high-hyperdiploid B-ALL patients with slow MRD response, who require new treatment approaches. Among NCI high-risk patients, 93% with ETV6::RUNX1 and 54% with high-hyperdiploid B-ALL experienced excellent outcomes with a low-intensity regimen. These trials were registered at www.clinicaltrials.gov as #NCT00137111 and #NCT00549848.

1.
Hunger
SP
,
Mullighan
CG
.
Acute lymphoblastic leukemia in children
.
N Engl J Med
.
2015
;
373
(
16
):
1541
-
1552
.
2.
Inaba
H
,
Mullighan
CG
.
Pediatric acute lymphoblastic leukemia
.
Haematologica
.
2020
;
105
(
11
):
2524
-
2539
.
3.
Bhojwani
D
,
Pei
D
,
Sandlund
JT
, et al
.
ETV6-RUNX1-positive childhood acute lymphoblastic leukemia: improved outcome with contemporary therapy
.
Leukemia
.
2012
;
26
(
2
):
265
-
270
.
4.
Mattano
LA
,
Devidas
M
,
Maloney
KW
, et al
.
Favorable trisomies and ETV6-RUNX1 predict cure in low-risk B-cell acute lymphoblastic leukemia: results from Children's Oncology Group trial AALL0331
.
J Clin Oncol
.
2021
;
39
(
14
):
1540
-
1552
.
5.
Rubnitz
JE
,
Wichlan
D
,
Devidas
M
, et al
.
Prospective analysis of TEL gene rearrangements in childhood acute lymphoblastic leukemia: a Children's Oncology Group study
.
J Clin Oncol
.
2008
;
26
(
13
):
2186
-
2191
.
6.
Enshaei
A
,
Schwab
CJ
,
Konn
ZJ
, et al
.
Long-term follow-up of ETV6-RUNX1 ALL reveals that NCI risk, rather than secondary genetic abnormalities, is the key risk factor
.
Leukemia
.
2013
;
27
(
11
):
2256
-
2259
.
7.
Loh
ML
,
Goldwasser
MA
,
Silverman
LB
, et al
.
Prospective analysis of TEL/AML1-positive patients treated on Dana-Farber Cancer Institute Consortium Protocol 95-01
.
Blood
.
2006
;
107
(
11
):
4508
-
4513
.
8.
Harris
MB
,
Shuster
JJ
,
Carroll
A
, et al
.
Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor cell acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study
.
Blood
.
1992
;
79
(
12
):
3316
-
3324
.
9.
Dastugue
N
,
Suciu
S
,
Plat
G
, et al
.
Hyperdiploidy with 58-66 chromosomes in childhood B-acute lymphoblastic leukemia is highly curable: 58951 CLG-EORTC results
.
Blood
.
2013
;
121
(
13
):
2415
-
2423
.
10.
Jeha
S
,
Choi
J
,
Roberts
KG
, et al
.
Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy
.
Blood Cancer Discov
.
2021
;
2
(
4
):
326
-
337
.
11.
Pui
C-H
,
Pei
D
,
Coustan-Smith
E
, et al
.
Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study
.
Lancet Oncol
.
2015
;
16
(
4
):
465
-
474
.
12.
O'Connor
D
,
Enshaei
A
,
Bartram
J
, et al
.
Genotype-specific minimal residual disease interpretation improves stratification in pediatric acute lymphoblastic leukemia
.
J Clin Oncol
.
2018
;
36
(
1
):
34
-
43
.
13.
Pui
C-H
,
Pei
D
,
Raimondi
SC
, et al
.
Clinical impact of minimal residual disease in children with different subtypes of acute lymphoblastic leukemia treated with response-adapted therapy
.
Leukemia
.
2017
;
31
(
2
):
333
-
339
.
14.
Pui
C-H
,
Campana
D
,
Pei
D
, et al
.
Treating childhood acute lymphoblastic leukemia without cranial irradiation
.
N Engl J Med
.
2009
;
360
(
26
):
2730
-
2741
.
15.
Jeha
S
,
Pei
D
,
Choi
J
, et al
.
Improved CNS control of childhood acute lymphoblastic leukemia without cranial irradiation: St Jude total therapy study 16
.
J Clin Oncol
.
2019
;
37
(
35
):
3377
-
3391
.
16.
Lee
SHR
,
Ashcraft
E
,
Yang
W
, et al
.
Prognostic and pharmacotypic heterogeneity of hyperdiploidy in childhood ALL
.
J Clin Oncol
.
2023
;
41
(
35
):
5422
-
5432
.
17.
Vora
A
,
Goulden
N
,
Wade
R
, et al
.
Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial
.
Lancet Oncol
.
2013
;
14
(
3
):
199
-
209
.
18.
Bařinka
J
,
Hu
Z
,
Wang
L
, et al
.
RNAseqCNV: analysis of large-scale copy number variations from RNA-seq data
.
Leukemia
.
2022
;
36
(
6
):
1492
-
1498
.
19.
Mullighan
CG
,
Goorha
S
,
Radtke
I
, et al
.
Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia
.
Nature
.
2007
;
446
(
7137
):
758
-
764
.
20.
Kaplan
EL
,
Meier
P
.
Nonparametric estimation from incomplete observations
.
J Am Stat Assoc
.
1958
;
53
(
282
):
457
-
481
.
21.
Mantel
N
,
Haenszel
W
.
Statistical aspects of the analysis of data from retrospective studies of disease
.
J Natl Cancer Inst
.
1959
;
22
(
4
):
719
-
748
.
22.
Kalbfleisch
JD
,
Prentice
RL
. The Statistical Analysis of Failure Time Data. 2nd ed.
John Wiley & Sons
;
1980
.
23.
Gray
RJ
.
A class of K-sample tests for comparing the cumulative incidence of a competing risk
.
Ann Statist
.
1988
;
16
(
3
):
1141
-
1154
.
24.
Ramakers-van Woerden
NL
,
Pieters
R
,
Loonen
AH
, et al
.
TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia
.
Blood
.
2000
;
96
(
3
):
1094
-
1099
.
25.
Lee
SHR
,
Yang
W
,
Gocho
Y
, et al
.
Pharmacotypes across the genomic landscape of pediatric acute lymphoblastic leukemia and impact on treatment response
.
Nat Med
.
2023
;
29
(
1
):
170
-
179
.
26.
Schrappe
M
,
Bleckmann
K
,
Zimmermann
M
, et al
.
Reduced-intensity delayed intensification in standard-risk pediatric acute lymphoblastic leukemia defined by undetectable minimal residual disease: results of an international randomized trial (AIEOP-BFM ALL 2000)
.
J Clin Oncol
.
2018
;
36
(
3
):
244
-
253
.
27.
Tsuchida
M
,
Ohara
A
,
Manabe
A
, et al
.
Long-term results of Tokyo Children's Cancer Study Group trials for childhood acute lymphoblastic leukemia, 1984-1999
.
Leukemia
.
2010
;
24
(
2
):
383
-
396
.
28.
Kato
M
,
Ishimaru
S
,
Seki
M
, et al
.
Long-term outcome of 6-month maintenance chemotherapy for acute lymphoblastic leukemia in children
.
Leukemia
.
2017
;
31
(
3
):
580
-
584
.
29.
Pieters
R
,
de Groot-Kruseman
H
,
Van der Velden
V
, et al
.
Successful therapy reduction and intensification for childhood acute lymphoblastic leukemia based on minimal residual disease monitoring: study ALL10 from the Dutch Childhood Oncology Group
.
J Clin Oncol
.
2016
;
34
(
22
):
2591
-
2601
.
30.
Ariffin
H
,
Chiew
EKH
,
Oh
BLZ
, et al
.
Anthracycline-free protocol for favorable-risk childhood ALL: a noninferiority comparison between Malaysia-Singapore ALL 2003 and ALL 2010 studies
.
J Clin Oncol
.
2023
;
41
(
20
):
3642
-
3651
.
31.
Pieters
R
,
de Groot-Kruseman
H
,
Fiocco
M
, et al
.
Improved outcome for ALL by prolonging therapy for IKZF1 deletion and decreasing therapy for other risk groups
.
J Clin Oncol
.
2023
;
41
(
25
):
4130
-
4142
.
32.
Brady
SW
,
Roberts
KG
,
Gu
Z
, et al
.
The genomic landscape of pediatric acute lymphoblastic leukemia
.
Nat Genet
.
2022
;
54
(
9
):
1376
-
1389
.
33.
Mangum
DS
,
Bishop
JD
,
Zhou
Y
, et al
.
Characterisation of children and adolescents with acute lymphoblastic leukaemia who presented without peripheral blood blasts at diagnosis
.
Br J Haematol
.
2023
;
200
(
3
):
338
-
343
.
34.
Lee
SHR
,
Antillon-Klussmann
F
,
Pei
D
, et al
.
Association of genetic ancestry with the molecular subtypes and prognosis of childhood acute lymphoblastic leukemia
.
JAMA Oncol
.
2022
;
8
(
3
):
354
-
363
.
35.
Moorman
AV
,
Antony
G
,
Wade
R
, et al
.
Time to cure for childhood and young adult acute lymphoblastic leukemia is independent of early risk factors: long-term follow-up of the UKALL2003 trial
.
J Clin Oncol
.
2022
;
40
(
36
):
4228
-
4239
.
36.
Schrappe
M
,
Hunger
SP
,
Pui
C-H
, et al
.
Outcomes after induction failure in childhood acute lymphoblastic leukemia
.
N Engl J Med
.
2012
;
366
(
15
):
1371
-
1381
.
37.
Lopez-Lopez
E
,
Autry
RJ
,
Smith
C
, et al
.
Pharmacogenomics of intracellular methotrexate polyglutamates in patients' leukemia cells in vivo
.
J Clin Invest
.
2020
;
130
(
12
):
6600
-
6615
.
38.
Kaspers
GJ
,
Smets
LA
,
Pieters
R
,
Van Zantwijk
CH
,
Van Wering
ER
,
Veerman
AJ
.
Favorable prognosis of hyperdiploid common acute lymphoblastic leukemia may be explained by sensitivity to antimetabolites and other drugs: results of an in vitro study
.
Blood
.
1995
;
85
(
3
):
751
-
756
.
39.
Enshaei
A
,
Vora
A
,
Harrison
CJ
,
Moppett
J
,
Moorman
AV
.
Defining low-risk high hyperdiploidy in patients with paediatric acute lymphoblastic leukaemia: a retrospective analysis of data from the UKALL97/99 and UKALL2003 clinical trials
.
Lancet Haematol
.
2021
;
8
(
11
):
e828
-
e839
.
40.
Østergaard
A
,
Enshaei
A
,
Pieters
R
, et al
.
The prognostic effect of IKZF1 deletions in ETV6::RUNX1 and high hyperdiploid childhood acute lymphoblastic leukemia
.
Hemasphere
.
2023
;
7
(
5
):
e875
.
41.
Rujkijyanont
P
,
Inaba
H
.
Diagnostic and treatment strategies for pediatric acute lymphoblastic leukemia in low- and middle-income countries
.
Leukemia
.
2024
;
38
(
8
):
1649
-
1662
.
42.
Rank
CU
,
Toft
N
,
Tuckuviene
R
, et al
.
Thromboembolism in acute lymphoblastic leukemia: results of NOPHO ALL2008 protocol treatment in patients aged 1 to 45 years
.
Blood
.
2018
;
131
(
22
):
2475
-
2484
.
43.
Zheng
Y
,
Yang
W
,
Estepp
J
, et al
.
Genomic analysis of venous thrombosis in children with acute lymphoblastic leukemia from diverse ancestries
.
Haematologica
.
2024
;
109
(
1
):
53
-
59
.
44.
Liu
C
,
Yang
W
,
Devidas
M
, et al
.
Clinical and genetic risk factors for acute pancreatitis in patients with acute lymphoblastic leukemia
.
J Clin Oncol
.
2016
;
34
(
18
):
2133
-
2140
.
45.
Rank
CU
,
Wolthers
BO
,
Grell
K
, et al
.
Asparaginase-associated pancreatitis in acute lymphoblastic leukemia: results from the NOPHO ALL2008 treatment of patients 1-45 years of age
.
J Clin Oncol
.
2020
;
38
(
2
):
145
-
154
.
46.
Dixon
SB
,
Chen
Y
,
Yasui
Y
, et al
.
Reduced morbidity and mortality in survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study
.
J Clin Oncol
.
2020
;
38
(
29
):
3418
-
3429
.
You do not currently have access to this content.
Sign in via your Institution