• Iron restriction in MDS mice improves erythropoiesis, preserves the HSPC pool, limits myeloid expansion, and delays leukemic transformation.

  • Combining iron restriction and erythroid maturation drugs shows superior improvement of erythropoiesis and disease-modifying potential in MDS.

Abstract

Although iron overload is a common feature in myelodysplastic syndromes (MDS), it remains unclear how iron excess is detrimental for disease pathophysiology. Taking advantage of complementary approaches, we analyzed the impact of iron overload and restriction achieved through genetic activation of ferroportin (FPN) via the C326S mutation (FPNC326S) and pharmacologic inhibition (vamifeport) of the iron exporter FPN, respectively, in a MDS mouse model. Although FPNC326S-induced iron overload did not significantly improve the late stages of erythroid maturation, vamifeport-mediated iron restriction ameliorated anemia and red blood cell maturation in MDS mice, through the reduction of oxidative stress and apoptosis in erythroid progenitors. Iron overload aggravated, and restriction alleviated, reactive oxygen species formation, DNA damage, and cell death in hematopoietic stem and progenitor cells (HSPCs), resulting in altered cell survival and quality. Finally, myeloid bias, indicated by expanded bone marrow myeloid progenitors and circulating immature myeloid blasts, was exacerbated by iron excess and attenuated by iron restriction. Overall, vamifeport treatment resulted in improved anemia and significant survival increment in MDS mice. Interestingly, the combined therapy with vamifeport and the erythroid maturation agent luspatercept has superior effect in improving anemia and myeloid bias as compared with single treatments and offers additive beneficial effects in MDS. Our results prove, to our knowledge, for the first time in a preclinical model, that iron plays a pathologic role in transfusion-independent MDS. This is likely aggravated by transfusional iron overload, as suggested by observations in the FPNC326SMDS model. Ultimately, the beneficial effects of pharmacologic FPN inhibition uncovers the therapeutic potential of early prevention of iron toxicity in transfusion-independent MDS.

1.
Vinchi
F
,
Hell
S
,
Platzbecker
U
.
Controversies on the consequences of iron overload and chelation in MDS
.
HemaSphere
.
2020
;
4
(
3
):
e357
.
2.
Gattermann
N
.
Iron overload in myelodysplastic syndromes (MDS)
.
Int J Hematol
.
2018
;
107
(
1
):
55
-
63
.
3.
Weber
S
,
Parmon
A
,
Kurrle
N
,
Schnutgen
F
,
Serve
H
.
The clinical significance of iron overload and iron metabolism in myelodysplastic syndrome and acute myeloid leukemia
.
Front Immunol
.
2020
;
11
:
627662
.
4.
Santini
V
,
Girelli
D
,
Sanna
A
, et al
.
Hepcidin levels and their determinants in different types of myelodysplastic syndromes
.
PLoS One
.
2011
;
6
(
8
):
e23109
.
5.
Kautz
L
,
Jung
G
,
Valore
EV
,
Rivella
S
,
Nemeth
E
,
Ganz
T
.
Identification of erythroferrone as an erythroid regulator of iron metabolism
.
Nat Genet
.
2014
;
46
(
7
):
678
-
684
.
6.
Sardo
U
,
Perrier
P
,
Cormier
K
, et al
.
The hepatokine FGL1 regulates hepcidin and iron metabolism during anemia in mice by antagonizing BMP signaling
.
Blood
.
2024
;
143
(
13
):
1282
-
1292
.
7.
Petzer
V
,
Theurl
I
,
Weiss
G
,
Wolf
D
.
EnvIRONmental aspects in myelodysplastic syndrome
.
Int J Mol Sci
.
2021
;
22
(
10
):
5202
.
8.
Zeidan
AM
,
Griffiths
EA
.
To chelate or not to chelate in MDS: that is the question
.
Blood Rev
.
2018
;
32
(
5
):
368
-
377
.
9.
Pilo
F
,
Cilloni
D
,
Della Porta
MG
, et al
.
Iron-mediated tissue damage in acquired ineffective erythropoiesis disease: it's more a matter of burden or more of exposure to toxic iron form?
.
Leuk Res
.
2022
;
114
:
106792
.
10.
Angelucci
E
,
Cianciulli
P
,
Finelli
C
,
Mecucci
C
,
Voso
MT
,
Tura
S
.
Unraveling the mechanisms behind iron overload and ineffective hematopoiesis in myelodysplastic syndromes
.
Leuk Res
.
2017
;
62
:
108
-
115
.
11.
Jin
X
,
He
X
,
Cao
X
, et al
.
Iron overload impairs normal hematopoietic stem and progenitor cells through reactive oxygen species and shortens survival in myelodysplastic syndrome mice
.
Haematologica
.
2018
;
103
(
10
):
1627
-
1634
.
12.
Tanaka
H
,
Espinoza
JL
,
Fujiwara
R
, et al
.
Excessive reactive iron impairs hematopoiesis by affecting both immature hematopoietic cells and stromal cells
.
Cells
.
2019
;
8
(
3
):
226
.
13.
Chai
X
,
Li
D
,
Cao
X
, et al
.
ROS-mediated iron overload injures the hematopoiesis of bone marrow by damaging hematopoietic stem/progenitor cells in mice
.
Sci Rep
.
2015
;
5
:
10181
.
14.
Platzbecker
U
.
Treatment of MDS
.
Blood
.
2019
;
133
(
10
):
1096
-
1107
.
15.
Vinchi
F
,
Platzbecker
U
.
Luspatercept: a peaceful revolution in the standard of care for myelodysplastic neoplasms
.
HemaSphere
.
2024
;
8
(
3
):
e41
.
16.
Platzbecker
U
,
Germing
U
,
Götze
KS
, et al
.
Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study
.
Lancet Oncol
.
2017
;
18
(
10
):
1338
-
1347
.
17.
Fenaux
P
,
Platzbecker
U
,
Mufti
GJ
, et al
.
Luspatercept in patients with lower-risk myelodysplastic syndromes
.
N Engl J Med
.
2020
;
382
(
2
):
140
-
151
.
18.
Manolova
V
,
Nyffenegger
N
,
Flace
A
, et al
.
Oral ferroportin inhibitor ameliorates ineffective erythropoiesis in a model of beta-thalassemia
.
J Clin Invest
.
2019
;
130
(
1
):
491
-
506
.
19.
Kalleda
N
,
Flace
A
,
Altermatt
P
, et al
.
Ferroportin inhibitor vamifeport ameliorates ineffective erythropoiesis in a mouse model of beta-thalassemia with blood transfusions
.
Haematologica
.
2023
;
108
(
10
):
2703
-
2714
.
20.
Nyffenegger
N
,
Flace
A
,
Doucerain
C
,
Durrenberger
F
,
Manolova
V
.
The oral ferroportin inhibitor VIT-2763 improves erythropoiesis without interfering with iron chelation therapy in a mouse model of beta-thalassemia
.
Int J Mol Sci
.
2021
;
22
(
2
):
873
.
21.
Nyffenegger
N
,
Zennadi
R
,
Kalleda
N
, et al
.
The oral ferroportin inhibitor vamifeport improves hemodynamics in a mouse model of sickle cell disease
.
Blood
.
2022
;
140
(
7
):
769
-
781
.
22.
Slape
C
,
Lin
YW
,
Hartung
H
,
Zhang
Z
,
Wolff
L
,
Aplan
PD
.
NUP98-HOX translocations lead to myelodysplastic syndrome in mice and men
.
J Natl Cancer Inst Monogr
.
2008
;
2008
(
39
):
64
-
68
.
23.
Lin
YW
,
Slape
C
,
Zhang
Z
,
Aplan
PD
.
NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia
.
Blood
.
2005
;
106
(
1
):
287
-
295
.
24.
Altamura
S
,
Kessler
R
,
Grone
HJ
, et al
.
Resistance of ferroportin to hepcidin binding causes exocrine pancreatic failure and fatal iron overload
.
Cell Metab
.
2014
;
20
(
2
):
359
-
367
.
25.
Vinchi
F
,
Porto
G
,
Simmelbauer
A
, et al
.
Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction
.
Eur Heart J
.
2020
;
41
(
28
):
2681
-
2695
.
26.
Sharma
R
,
Antypiuk
A
,
Vance
SZ
, et al
.
Macrophage metabolic rewiring improves heme-suppressed efferocytosis and tissue damage in sickle cell disease
.
Blood
.
2023
;
141
(
25
):
3091
-
3108
.
27.
Park
S
,
Kosmider
O
,
Maloisel
F
, et al
.
Dyserythropoiesis evaluated by the RED score and hepcidin:ferritin ratio predicts response to erythropoietin in lower-risk myelodysplastic syndromes
.
Haematologica
.
2019
;
104
(
3
):
497
-
504
.
28.
Taoka
K
,
Kumano
K
,
Nakamura
F
, et al
.
The effect of iron overload and chelation on erythroid differentiation
.
Int J Hematol
.
2012
;
95
(
2
):
149
-
159
.
29.
Prus
E
,
Fibach
E
.
Uptake of non-transferrin iron by erythroid cells
.
Anemia
.
2011
;
2011
:
945289
.
30.
Duarte
TL
,
Lopes
M
,
Oliveira
M
, et al
.
Iron overload induces dysplastic erythropoiesis and features of myelodysplasia in Nrf2-deficient mice
.
Leukemia
.
2024
;
38
(
1
):
96
-
108
.
31.
Guerra
A
,
Parhiz
H
,
Rivella
S
.
Novel potential therapeutics to modify iron metabolism and red cell synthesis in diseases associated with defective erythropoiesis
.
Haematologica
.
2023
;
108
(
10
):
2582
-
2593
.
32.
Zheng
QQ
,
Zhao
YS
,
Guo
J
, et al
.
Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome
.
Leuk Res
.
2017
;
58
:
55
-
62
.
33.
An
W
,
Feola
M
,
Levy
M
, et al
.
Iron chelation improves ineffective erythropoiesis and iron overload in myelodysplastic syndrome mice
.
Elife
.
2023
;
12
:
e83103
.
34.
Leitch
HA
,
Gattermann
N
.
Hematologic improvement with iron chelation therapy in myelodysplastic syndromes: clinical data, potential mechanisms, and outstanding questions
.
Crit Rev Oncol Hematol
.
2019
;
141
:
54
-
72
.
35.
Kao
YR
,
Chen
J
,
Kumari
R
, et al
.
An iron rheostat controls hematopoietic stem cell fate
.
Cell Stem Cell
.
2024
;
31
(
3
):
378
-
397.e12e12
.
36.
Cilloni
D
,
Ravera
S
,
Calabrese
C
, et al
.
Iron overload alters the energy metabolism in patients with myelodysplastic syndromes: results from the multicenter FISM BIOFER study
.
Sci Rep
.
2020
;
10
(
1
):
9156
.
37.
Jimenez-Solas
T
,
Lopez-Cadenas
F
,
Aires-Mejia
I
, et al
.
Deferasirox reduces oxidative DNA damage in bone marrow cells from myelodysplastic patients and improves their differentiation capacity
.
Br J Haematol
.
2019
;
187
(
1
):
93
-
104
.
38.
Kepinska
M
,
Szyller
J
,
Milnerowicz
H
.
The influence of oxidative stress induced by iron on telomere length
.
Environ Toxicol Pharmacol
.
2015
;
40
(
3
):
931
-
935
.
39.
Rollison
DE
,
Epling-Burnette
PK
,
Park
JY
, et al
.
Telomere length in myelodysplastic syndromes
.
Leuk Lymphoma
.
2011
;
52
(
8
):
1528
-
1536
.
40.
Kikuchi
S
,
Kobune
M
,
Iyama
S
, et al
.
Improvement of iron-mediated oxidative DNA damage in patients with transfusion-dependent myelodysplastic syndrome by treatment with deferasirox
.
Free Radic Biol Med
.
2012
;
53
(
4
):
643
-
648
.
41.
Saito
K
,
Fujiwara
T
,
Hatta
S
, et al
.
Generation and molecular characterization of human ring sideroblasts: a key role of ferrous iron in terminal erythroid differentiation and ring sideroblast formation
.
Mol Cell Biol
.
2019
;
39
(
7
):
e00387-18
.
42.
Wang
Y
,
Huang
L
,
Hua
Y
, et al
.
Impact of iron overload by transfusion on survival and leukemia transformation of myelodysplastic syndromes in a single center of China
.
Hematology
.
2021
;
26
(
1
):
874
-
880
.
43.
Chan
LSA
,
Gu
LC
,
Leitch
HA
,
Wells
RA
.
Intracellular ROS profile in hematopoietic progenitors of MDS patients: association with blast count and iron overload
.
Hematology
.
2021
;
26
(
1
):
88
-
95
.
44.
Okabe
H
,
Suzuki
T
,
Uehara
E
,
Ueda
M
,
Nagai
T
,
Ozawa
K
.
The bone marrow hematopoietic microenvironment is impaired in iron-overloaded mice
.
Eur J Haematol
.
2014
;
93
(
2
):
118
-
128
.
45.
Teichman
J
,
Geddes
M
,
Zhu
N
, et al
.
High transferrin saturation predicts inferior clinical outcomes in patients with myelodysplastic syndromes
.
Haematologica
.
2023
;
108
(
2
):
532
-
542
.
46.
Mantovani
LF
,
Santos
FPS
,
Perini
GF
, et al
.
Hepatic and cardiac and iron overload detected by T2∗ magnetic resonance (MRI) in patients with myelodisplastic syndrome: a cross-sectional study
.
Leuk Res
.
2019
;
76
:
53
-
57
.
47.
de Swart
L
,
Crouch
S
,
Hoeks
M
, et al;
EUMDS Registry Participants
.
Impact of red blood cell transfusion dose density on progression-free survival in patients with lower-risk myelodysplastic syndromes
.
Haematologica
.
2020
;
105
(
3
):
632
-
639
.
48.
Chan
LSA
,
Gu
LC
,
Wells
RA
.
The effects of secondary iron overload and iron chelation on a radiation-induced acute myeloid leukemia mouse model
.
BMC Cancer
.
2021
;
21
(
1
):
509
.
49.
Pilo
F
,
Angelucci
E
.
A storm in the niche: iron, oxidative stress and haemopoiesis
.
Blood Rev
.
2018
;
32
(
1
):
29
-
35
.
50.
Hoeks
M
,
Yu
G
,
Langemeijer
S
, et al;
EUMDS Registry Participants
.
Impact of treatment with iron chelation therapy in patients with lower-risk myelodysplastic syndromes participating in the European MDS registry
.
Haematologica
.
2020
;
105
(
3
):
640
-
651
.
51.
Lucijanic
M
,
Lovrinov
M
,
Skelin
M
,
Garcia-Manero
G
.
Iron chelation in transfusion-dependent patients with low- to intermediate-1-risk myelodysplastic syndromes
.
Ann Intern Med
.
2020
;
173
(
7
):
595
-
596
.
52.
Angelucci
E
,
Urru
SA
,
Pilo
F
,
Piperno
A
.
Myelodysplastic syndromes and iron chelation therapy
.
Mediterr J Hematol Infect Dis
.
2017
;
9
(
1
):
e2017021
.
53.
Wong
CAC
,
Leitch
HA
.
Delayed time from RBC transfusion dependence to first cardiac event in lower IPSS risk MDS patients receiving iron chelation therapy
.
Leuk Res
.
2019
;
83
:
106170
.
54.
Hoeks
M
,
Bagguley
T
,
van Marrewijk
C
, et al;
EUMDS Registry Participants
.
Toxic iron species in lower-risk myelodysplastic syndrome patients: course of disease and effects on outcome
.
Leukemia
.
2021
;
35
(
6
):
1745
-
1750
.
55.
de Swart
L
,
Reiniers
C
,
Bagguley
T
, et al;
EUMDS Steering Committee
.
Labile plasma iron levels predict survival in patients with lower-risk myelodysplastic syndromes
.
Haematologica
.
2018
;
103
(
1
):
69
-
79
.
56.
Kawabata
H
,
Usuki
K
,
Shindo-Ueda
M
, et al;
Japanese National Research Group on Idiopathic Bone Marrow Failure Syndromes
.
Serum ferritin levels at diagnosis predict prognosis in patients with low blast count myelodysplastic syndromes
.
Int J Hematol
.
2019
;
110
(
5
):
533
-
542
.
57.
Killick
S
,
Jackson
A
,
Coulthard
HC
, et al
.
De-Iron: a phase 2 trial of the activity and safety of Deferasirox administered at early iron loading in patients with transfusion-dependent myelodysplastic syndromes
.
Br J Haematol
.
2020
;
189
(
6
):
e237
-
e240
.
58.
Germing
U
,
Oliva
EN
,
Hiwase
D
,
Almeida
A
.
Treatment of anemia in transfusion-dependent and non-transfusion-dependent lower-risk MDS: current and emerging Strategies
.
HemaSphere
.
2019
;
3
(
6
):
e314
.
59.
Schafer
AI
,
Cheron
RG
,
Dluhy
R
, et al
.
Clinical consequences of acquired transfusional iron overload in adults
.
N Engl J Med
.
1981
;
304
(
6
):
319
-
324
.
60.
Guerra
A
,
Hamilton
N
,
Rivera
A
,
Demsko
P
,
Guo
S
,
Rivella
S
.
Combination of a TGF-beta ligand trap (RAP-GRL) and TMPRSS6-ASO is superior for correcting beta-thalassemia
.
Am J Hematol
.
2024
;
99
(
7
):
1300
-
1312
.
61.
Vinchi
F
.
New partners for luspatercept in beta-thalassemia
.
Am J Hematol
.
2024
;
99
(
7
):
1217
-
1219
.
62.
Mathieu
M
,
Friedrich
C
,
Ducrot
N
, et al
.
Luspatercept (RAP-536) modulates oxidative stress without affecting mutation burden in myelodysplastic syndromes
.
Ann Hematol
.
2022
;
101
(
12
):
2633
-
2643
.
You do not currently have access to this content.
Sign in via your Institution