• Complement-fixing CD20 mAbs deposit C3d on lymphoma cells; this neo-antigen can be selectively targeted to boost therapeutic efficacy.

  • In B-cell lymphoma xenografts, C3d combined with CD20 mAbs extended survival over single-agent therapy, without apparent toxicity.

Abstract

Monoclonal antibodies (mAbs) improve survival of patients with mature B-cell malignancies. Fcγ receptor–dependent effector mechanisms kill tumor cells but can promote antigen loss through trogocytosis, contributing to treatment failures. Cell-bound mAbs trigger the complement cascade to deposit C3 activation fragments and lyse cells. Within 24 hours after ofatumumab administration to patients with chronic lymphocytic leukemia (CLL), circulating tumor cells had lost CD20 and were opsonized with C3d, the terminal covalently bound form of complement protein C3. We hypothesized that C3d provides a target to eliminate residual CD20 tumor cells. To test this hypothesis, we generated C8xi, a mouse/human chimeric immunoglobulin G1 (IgG1) that reacts with human but not mouse C3d. C8xi was effective in a patient-derived xenograft model against CD20, C3d opsonized CLL cells from patients treated with ofatumumab. We also generated rabbit mAbs, 2 of which were chosen because they bound mouse and human C3d with low nanomolar affinity but were minimally cross-reactive with full-length C3. Anti-C3d rabbit/human chimeric IgG1 in combination with ofatumumab or rituximab prolonged survival of xenografted mice that model 3 different types of non-Hodgkin lymphoma (NHL). For example, in a diffuse large B-cell lymphoma model (SU-DHL-6), median survival with single-agent CD20 mAb was 114 days but was not reached for mAb combination treatment (P = .008). In another NHL model (SU-DHL-4), single-agent and combination mAb therapy eradicated lymphoma in most mice. In long-term survivors from both cohorts, there was no evidence of adverse effects. We propose that C3d mAbs combined with complement-fixing CD20 mAbs can overcome antigen-loss escape and increase efficacy of mAb-based therapy.

1.
Goydel
RS
,
Rader
C
.
Antibody-based cancer therapy
.
Oncogene
.
2021
;
40
(
21
):
3655
-
3664
.
2.
Klein
C
,
Jamois
C
,
Nielsen
T
.
Anti-CD20 treatment for B-cell malignancies: current status and future directions
.
Expert Opin Biol Ther
.
2021
;
21
(
2
):
161
-
181
.
3.
Tedder
TF
,
Streuli
M
,
Schlossman
SF
,
Saito
H
.
Isolation and structure of a cDNA encoding the B1 (CD20) cell-surface antigen of human B lymphocytes
.
Proc Natl Acad Sci U S A
.
1988
;
85
(
1
):
208
-
212
.
4.
Pavanello
F
,
Zucca
E
,
Ghielmini
M
.
Rituximab: 13 open questions after 20 years of clinical use
.
Cancer Treat Rev
.
2017
;
53
:
38
-
46
.
5.
Golay
J
.
Direct targeting of cancer cells with antibodies: what can we learn from the successes and failure of unconjugated antibodies for lymphoid neoplasias?
.
J Autoimmun
.
2017
;
85
:
6
-
19
.
6.
Sotillo
E
,
Barrett
DM
,
Black
KL
, et al
.
Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy
.
Cancer Discov
.
2015
;
5
(
12
):
1282
-
1295
.
7.
Jacoby
E
,
Nguyen
SM
,
Fountaine
TJ
, et al
.
CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity
.
Nat Commun
.
2016
;
7
:
12320
.
8.
Vaughan
AT
,
Chan
CH
,
Klein
C
,
Glennie
MJ
,
Beers
SA
,
Cragg
MS
.
Activatory and inhibitory Fcγ receptors augment rituximab-mediated internalization of CD20 independent of signaling via the cytoplasmic domain
.
J Biol Chem
.
2015
;
290
(
9
):
5424
-
5437
.
9.
Taylor
RP
,
Lindorfer
MA
.
Fcγ-receptor-mediated trogocytosis impacts mAb-based therapies: historical precedence and recent developments
.
Blood
.
2015
;
125
(
5
):
762
-
766
.
10.
Beum
PV
,
Kennedy
AD
,
Williams
ME
,
Lindorfer
MA
,
Taylor
RP
.
The shaving reaction: rituximab/CD20 complexes are removed from mantle cell lymphoma and chronic lymphocytic leukemia cells by THP-1 monocytes
.
J Immunol
.
2006
;
176
(
4
):
2600
-
2609
.
11.
Suzuki
E
,
Kataoka
TR
,
Hirata
M
, et al
.
Trogocytosis-mediated expression of HER2 on immune cells may be associated with a pathological complete response to trastuzumab-based primary systemic therapy in HER2-overexpressing breast cancer patients
.
BMC Cancer
.
2015
;
15
:
39
.
12.
Vijayaraghavan
S
,
Lipfert
L
,
Chevalier
K
, et al
.
Amivantamab (JNJ-61186372), an Fc enhanced EGFR/cMet bispecific antibody, induces receptor downmodulation and antitumor activity by monocyte/macrophage trogocytosis
.
Mol Cancer Ther
.
2020
;
19
(
10
):
2044
-
2056
.
13.
Beum
PV
,
Mack
DA
,
Pawluczkowycz
AW
,
Lindorfer
MA
,
Taylor
RP
.
Binding of rituximab, trastuzumab, cetuximab, or mAb T101 to cancer cells promotes trogocytosis mediated by THP-1 cells and monocytes
.
J Immunol
.
2008
;
181
(
11
):
8120
-
8132
.
14.
Rossi
EA
,
Goldenberg
DM
,
Michel
R
,
Rossi
DL
,
Wallace
DJ
,
Chang
CH
.
Trogocytosis of multiple B-cell surface markers by CD22 targeting with epratuzumab
.
Blood
.
2013
;
122
(
17
):
3020
-
3029
.
15.
Zhang
Y
,
McClellan
M
,
Efros
L
, et al
.
Daclizumab reduces CD25 levels on T cells through monocyte-mediated trogocytosis
.
Mult Scler
.
2014
;
20
(
2
):
156
-
164
.
16.
Nijhof
IS
,
Casneuf
T
,
van Velzen
J
, et al
.
CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma
.
Blood
.
2016
;
128
(
7
):
959
-
970
.
17.
Krejcik
J
,
Frerichs
KA
,
Nijhof
IS
, et al
.
Monocytes and granulocytes reduce CD38 expression levels on myeloma cells in patients treated with daratumumab
.
Clin Cancer Res
.
2017
;
23
(
24
):
7498
-
7511
.
18.
Beum
PV
,
Peek
EM
,
Lindorfer
MA
, et al
.
Loss of CD20 and bound CD20 antibody from opsonized B cells occurs more rapidly because of trogocytosis mediated by Fc receptor-expressing effector cells than direct internalization by the B cells
.
J Immunol
.
2011
;
187
(
6
):
3438
-
3447
.
19.
Burger
JA
.
Treatment of chronic lymphocytic leukemia
.
N Engl J Med
.
2020
;
383
(
5
):
460
-
473
.
20.
Goede
V
,
Fischer
K
,
Busch
R
, et al
.
Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions
.
N Engl J Med
.
2014
;
370
(
12
):
1101
-
1110
.
21.
Hallek
M
,
Fischer
K
,
Fingerle-Rowson
G
, et al
.
Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial
.
Lancet
.
2010
;
376
(
9747
):
1164
-
1174
.
22.
Hillmen
P
,
Robak
T
,
Janssens
A
, et al
.
Chlorambucil plus ofatumumab versus chlorambucil alone in previously untreated patients with chronic lymphocytic leukaemia (COMPLEMENT 1): a randomised, multicentre, open-label phase 3 trial
.
Lancet
.
2015
;
385
(
9980
):
1873
-
1883
.
23.
Eichhorst
B
,
Fink
AM
,
Bahlo
J
, et al
.
First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial
.
Lancet Oncol
.
2016
;
17
(
7
):
928
-
942
.
24.
Beurskens
FJ
,
Lindorfer
MA
,
Farooqui
M
, et al
.
Exhaustion of cytotoxic effector systems may limit monoclonal antibody-based immunotherapy in cancer patients
.
J Immunol
.
2012
;
188
(
7
):
3532
-
3541
.
25.
Liszewski
MK
,
Elvington
M
,
Kulkarni
HS
,
Atkinson
JP
.
Complement's hidden arsenal: New insights and novel functions inside the cell
.
Mol Immunol
.
2017
;
84
:
2
-
9
.
26.
Ricklin
D
,
Reis
ES
,
Mastellos
DC
,
Gros
P
,
Lambris
JD
.
Complement component C3 - the "Swiss army knife" of innate immunity and host defense
.
Immunol Res
.
2016
;
274
(
1
):
33
-
58
.
27.
Ricklin
D
,
Hajishengallis
G
,
Yang
K
,
Lambris
JD
.
Complement: a key system for immune surveillance and homeostasis
.
Nat Immunol
.
2010
;
11
(
9
):
785
-
797
.
28.
Taylor
RP
,
Lindorfer
MA
.
How do mAbs make use of complement to kill cancer cells: the role of Ca2+
.
Antibodies (Basel)
.
2020
;
9
(
3
):
45
.
29.
Hadders
MA
,
Bubeck
D
,
Roversi
P
, et al
.
Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9
.
Cell Rep
.
2012
;
1
(
3
):
200
-
207
.
30.
Merle
NS
,
Church
SE
,
Fremeaux-Bacchi
V
,
Roumenina
LT
.
Complement system part I: molecular mechanisms of activation and regulation
.
Front Immunol
.
2015
;
6
:
262
.
31.
Tegla
CA
,
Cudrici
C
,
Patel
S
, et al
.
Membrane attack by complement: the assembly and biology of terminal complement complexes
.
Immunol Res
.
2011
;
51
(
1
):
45
-
60
.
32.
Beum
PV
,
Lindorfer
MA
,
Peek
EM
, et al
.
Penetration of antibody-opsonized cells by the membrane attack complex of complement promotes Ca2+ influx and induces streamers
.
Eur J Immunol
.
2011
;
41
(
8
):
2436
-
2446
.
33.
Ross
GD
,
Yount
WJ
,
Walport
MJ
, et al
.
Disease-associated loss of erythrocyte complement receptors (CR1, C3b receptors) in patients with systemic lupus erythematosus and other diseases involving autoantibodies and/or complement activation
.
J Immunol
.
1985
;
135
(
3
):
2005
-
2014
.
34.
Ueda
T
,
Rieu
P
,
Brayer
J
,
Arnaout
MA
.
Identification of the complement iC3b binding site in the β2 integrin CR3 (CD11b/CD18)
.
Proc Natl Acad Sci U S A
.
1994
;
91
(
22
):
10680
-
10684
.
35.
Gros
P
,
Milder
FJ
,
Janssen
BJ
.
Complement driven by conformational changes
.
Nat Rev Immunol
.
2008
;
8
(
1
):
48
-
58
.
36.
Nishida
N
,
Walz
T
,
Springer
TA
.
Structural transitions of complement component C3 and its activation products
.
Proc Natl Acad Sci U S A
.
2006
;
103
(
52
):
19737
-
19742
.
37.
Janssen
BJ
,
Christodoulidou
A
,
McCarthy
A
,
Lambris
JD
,
Gros
P
.
Structure of C3b reveals conformational changes that underlie complement activity
.
Nature
.
2006
;
444
(
7116
):
213
-
216
.
38.
Desai
S
,
Mo
C
,
Gaglione
EM
, et al
.
Risk-adapted, ofatumumab-based chemoimmunotherapy and consolidation in treatment-naive chronic lymphocytic leukemia: a phase 2 study
.
Leuk Lymphoma
.
2021
;
62
(
8
):
1816
-
1827
.
39.
Herman
SE
,
Sun
X
,
McAuley
EM
, et al
.
Modeling tumor-host interactions of chronic lymphocytic leukemia in xenografted mice to study tumor biology and evaluate targeted therapy
.
Leukemia
.
2013
;
27
(
12
):
2311
-
2321
.
40.
Nagar
B
,
Jones
RG
,
Diefenbach
RJ
,
Isenman
DE
,
Rini
JM
.
X-ray crystal structure of C3d: a C3 fragment and ligand for complement receptor 2
.
Science
.
1998
;
280
(
5367
):
1277
-
1281
.
41.
Bagnara
D
,
Kaufman
MS
,
Calissano
C
, et al
.
A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease
.
Blood
.
2011
;
117
(
20
):
5463
-
5472
.
42.
Robinson
HR
,
Qi
J
,
Cook
EM
, et al
.
A CD19/CD3 bispecific antibody for effective immunotherapy of chronic lymphocytic leukemia in the ibrutinib era
.
Blood
.
2018
;
132
(
5
):
521
-
532
.
43.
Tucker
CA
,
Bebb
G
,
Klasa
RJ
, et al
.
Four human t(11;14)(q13;q32)-containing cell lines having classic and variant features of Mantle Cell Lymphoma
.
Leuk Res
.
2006
;
30
(
4
):
449
-
457
.
44.
Abe
M
,
Nozawa
Y
,
Wakasa
H
,
Ohno
H
,
Fukuhara
S
.
Characterization and comparison of two newly established Epstein-Barr virus-negative lymphoma B-cell lines. Surface markers, growth characteristics, cytogenetics, and transplantability
.
Cancer
.
1988
;
61
(
3
):
483
-
490
.
45.
Yuan
Y
,
Ren
J
,
Cao
S
,
Zhang
W
,
Li
J
.
Exogenous C3 protein enhances the adaptive immune response to polymicrobial sepsis through down-regulation of regulatory T cells
.
Int Immunopharmacol
.
2012
;
12
(
1
):
271
-
277
.
46.
Yuan
Y
,
Ren
J
,
Gu
G
,
Cao
S
,
Li
J
.
The effect of human complement C3 protein applied at different times in treatment of polymicrobial sepsis
.
Inflamm Res
.
2012
;
61
(
6
):
581
-
589
.
47.
Hofer
T
,
Tangkeangsirisin
W
,
Kennedy
MG
, et al
.
Chimeric rabbit/human Fab and IgG specific for members of the Nogo-66 receptor family selected for species cross-reactivity with an improved phage display vector
.
J Immunol Methods
.
2007
;
318
(
1-2
):
75
-
87
.
48.
Williams
ME
,
Densmore
JJ
,
Pawluczkowycz
AW
, et al
.
Thrice-weekly low-dose rituximab decreases CD20 loss via shaving and promotes enhanced targeting in chronic lymphocytic leukemia
.
J Immunol
.
2006
;
177
(
10
):
7435
-
7443
.
49.
Zent
CS
,
Pinney
JJ
,
Chu
CC
,
Elliott
MR
.
Complement activation in the treatment of B-cell malignancies
.
Antibodies (Basel)
.
2020
;
9
(
4
):
68
.
50.
VanDerMeid
KR
,
Elliott
MR
,
Baran
AM
,
Barr
PM
,
Chu
CC
,
Zent
CS
.
Cellular cytotoxicity of next-generation CD20 monoclonal antibodies
.
Cancer Immunol Res
.
2018
;
6
(
10
):
1150
-
1160
.
51.
Chu
CC
,
Pinney
JJ
,
Whitehead
HE
, et al
.
High-resolution quantification of discrete phagocytic events by live cell time-lapse high-content microscopy imaging
.
J Cell Sci
.
2020
;
133
(
5
):
jcs237883
.
52.
Dalle
S
,
Dupire
S
,
Brunet-Manquat
S
,
Reslan
L
,
Plesa
A
,
Dumontet
C
.
In vivo model of follicular lymphoma resistant to rituximab
.
Clin Cancer Res
.
2009
;
15
(
3
):
851
-
857
.
53.
Lindorfer
MA
,
Taylor
RP
.
FcγR-mediated trogocytosis 2.0: revisiting history gives rise to a unifying hypothesis
.
Antibodies (Basel)
.
2022
;
11
(
3
):
45
.
54.
Behrens
LM
,
van Egmond
M
,
van den Berg
TK
.
Neutrophils as immune effector cells in antibody therapy in cancer
.
Immunol Rev
.
2023
;
314
(
1
):
280
-
301
.
55.
Kennedy
AD
,
Beum
PV
,
Solga
MD
, et al
.
Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia
.
J Immunol
.
2004
;
172
(
5
):
3280
-
3288
.
56.
Uribe-Querol
E
,
Rosales
C
.
Phagocytosis: our current understanding of a universal biological process
.
Front Immunol
.
2020
;
11
:
1066
.
57.
Vorup-Jensen
T
,
Jensen
RK
.
Structural immunology of complement receptors 3 and 4
.
Front Immunol
.
2018
;
9
:
2716
.
58.
Durig
J
,
Ebeling
P
,
Grabellus
F
, et al
.
A novel nonobese diabetic/severe combined immunodeficient xenograft model for chronic lymphocytic leukemia reflects important clinical characteristics of the disease
.
Cancer Res
.
2007
;
67
(
18
):
8653
-
8661
.
59.
Armento
A
,
Ueffing
M
,
Clark
SJ
.
The complement system in age-related macular degeneration
.
Cell Mol Life Sci
.
2021
;
78
(
10
):
4487
-
4505
.
60.
Petr
V
,
Thurman
JM
.
The role of complement in kidney disease
.
Nat Rev Nephrol
.
2023
;
19
(
12
):
771
-
787
.
61.
Loriamini
M
,
Cserti-Gazdewich
C
,
Branch
DR
.
Autoimmune hemolytic anemias: classifications, pathophysiology, diagnoses and management
.
Int J Mol Sci
.
2024
;
25
(
8
):
4296
.
62.
Moreau
P
,
Dimopoulos
MA
,
Mikhael
J
, et al
.
Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): a multicentre, open-label, randomised phase 3 trial
.
Lancet
.
2021
;
397
(
10292
):
2361
-
2371
.
63.
Krejcik
J
,
Casneuf
T
,
Nijhof
IS
, et al
.
Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma
.
Blood
.
2016
;
128
(
3
):
384
-
394
.
64.
Sullivan
HC
,
Gerner-Smidt
C
,
Nooka
AK
, et al
.
Daratumumab (anti-CD38) induces loss of CD38 on red blood cells
.
Blood
.
2017
;
129
(
22
):
3033
-
3037
.
65.
Kumar
A
,
Planchais
C
,
Fronzes
R
,
Mouquet
H
,
Reyes
N
.
Binding mechanisms of therapeutic antibodies to human CD20
.
Science
.
2020
;
369
(
6505
):
793
-
799
.
66.
Bondza
S
,
Marosan
A
,
Kara
S
, et al
.
Complement-dependent activity of CD20-specific IgG correlates with bivalent antigen binding and C1q binding strength
.
Front Immunol
.
2020
;
11
:
609941
.
67.
Dalla Costa
G
,
Leocani
L
,
Comi
G
.
Ofatumumab subcutaneous injection for the treatment of relapsing forms of multiple sclerosis
.
Expert Rev Clin Immunol
.
2022
;
18
(
2
):
105
-
114
.
68.
Diebolder
CA
,
Beurskens
FJ
,
de Jong
RN
, et al
.
Complement is activated by IgG hexamers assembled at the cell surface
.
Science
.
2014
;
343
(
6176
):
1260
-
1263
.
69.
Kellner
C
,
Derer
S
,
Valerius
T
,
Peipp
M
.
Boosting ADCC and CDC activity by Fc engineering and evaluation of antibody effector functions
.
Methods
.
2014
;
65
(
1
):
105
-
113
.
70.
Rader
C
.
Bispecific antibodies in cancer immunotherapy
.
Curr Opin Biotechnol
.
2020
;
65
:
9
-
16
.
You do not currently have access to this content.
Sign in via your Institution