• Active metabolic checkpoints respond to AK2 deficiency by decreasing anabolic pathways to maintain nutrient homeostasis and proliferation.

  • When metabolic checkpoints are ineffective, AK2 deficiency leads to ectopic mTOR activation, nucleotide imbalance, and proliferation arrest.

Abstract

Cellular metabolism is highly dynamic during hematopoiesis, yet the regulatory networks that maintain metabolic homeostasis during differentiation are incompletely understood. Herein, we have studied the grave immunodeficiency syndrome reticular dysgenesis caused by loss of mitochondrial adenylate kinase 2 (AK2) function. By coupling single-cell transcriptomics in samples from patients with reticular dysgenesis with a CRISPR model of this disorder in primary human hematopoietic stem cells, we found that the consequences of AK2 deficiency for the hematopoietic system are contingent on the effective engagement of metabolic checkpoints. In hematopoietic stem and progenitor cells, including early granulocyte precursors, AK2 deficiency reduced mechanistic target of rapamycin (mTOR) signaling and anabolic pathway activation. This conserved nutrient homeostasis and maintained cell survival and proliferation. In contrast, during late-stage granulopoiesis, metabolic checkpoints were ineffective, leading to a paradoxical upregulation of mTOR activity and energy-consuming anabolic pathways such as ribonucleoprotein synthesis in AK2-deficient cells. This caused nucleotide imbalance, including highly elevated adenosine monophosphate and inosine monophosphate levels, the depletion of essential substrates such as NAD+ and aspartate, and ultimately resulted in proliferation arrest and demise of the granulocyte lineage. Our findings suggest that even severe metabolic defects can be tolerated with the help of metabolic checkpoints but that the failure of such checkpoints in differentiated cells results in a catastrophic loss of homeostasis.

1.
Lagresle-Peyrou
C
,
Six
EM
,
Picard
C
, et al
.
Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness
.
Nat Genet
.
2009
;
41
(
1
):
106
-
111
.
2.
Pannicke
U
,
Hönig
M
,
Hess
I
, et al
.
Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2
.
Nat Genet
.
2009
;
41
(
1
):
101
-
105
.
3.
Hoenig
M
,
Pannicke
U
,
Gaspar
HB
,
Schwarz
K
.
Recent advances in understanding the pathogenesis and management of reticular dysgenesis
.
Br J Haematol
.
2018
;
180
(
5
):
644
-
653
.
4.
Hoenig
M
,
Lagresle-Peyrou
C
,
Pannicke
U
, et al
.
Reticular dysgenesis: international survey on clinical presentation, transplantation, and outcome
.
Blood
.
2017
;
129
(
21
):
2928
-
2938
.
5.
Marcogliese
AN
,
Yee
DL
. Hematology: Basic Principles and Practice. Elsevier Inc.
2017
.
6.
Ott de Bruin
LM
,
Lankester
AC
,
Staal
FJT
.
Advances in gene therapy for inborn errors of immunity
.
Curr Opin Allergy Clin Immunol
.
2023
;
23
(
6
):
467
-
477
.
7.
Xu
X
,
Tailor
CS
,
Grunebaum
E
.
Gene therapy for primary immune deficiencies: a Canadian perspective
.
Allergy Asthma Clin Immunol
.
2017
;
13
(
1
):
14
.
8.
Dzeja
P
,
Terzic
A
.
Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing
.
Int J Mol Sci
.
2009
;
10
(
4
):
1729
-
1772
.
9.
Dzeja
PP
,
Terzic
A
.
Phosphotransfer networks and cellular energetics
.
J Exp Biol
.
2003
;
206
(
Pt 12
):
2039
-
2047
.
10.
Amiri
M
,
Conserva
F
,
Panayiotou
C
,
Karlsson
A
,
Solaroli
N
.
The human adenylate kinase 9 is a nucleoside mono- and diphosphate kinase
.
Int J Biochem Cell Biol
.
2013
;
45
(
5
):
925
-
931
.
11.
Henderson
LA
,
Frugoni
F
,
Hopkins
G
, et al
.
First reported case of Omenn syndrome in a patient with reticular dysgenesis
.
J Allergy Clin Immunol
.
2013
;
131
(
4
):
1227
-
1230.e12303
.
12.
Rissone
A
,
Weinacht
KG
,
la Marca
G
, et al
.
Reticular dysgenesis–associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress
.
J Exp Med
.
2015
;
212
(
8
):
1185
-
1202
.
13.
Six
E
,
Lagresle-Peyrou
C
,
Susini
S
, et al
.
AK2 deficiency compromises the mitochondrial energy metabolism required for differentiation of human neutrophil and lymphoid lineages
.
Cell Death Dis
.
2015
;
6
(
8
):
e1856
.
14.
Oshima
K
,
Saiki
N
,
Tanaka
M
, et al
.
Human AK2 links intracellular bioenergetic redistribution to the fate of hematopoietic progenitors
.
Biochem Biophys Res Commun
.
2018
;
497
(
2
):
719
-
725
.
15.
Chou
J
,
Alazami
AM
,
Jaber
F
, et al
.
Hypomorphic variants in AK2 reveal the contribution of mitochondrial function to B-cell activation
.
J Allergy Clin Immunol
.
2020
;
146
(
1
):
192
-
202
.
16.
Klein Geltink
RI
,
Kyle
RL
,
Pearce
EL
.
Unraveling the complex interplay between T cell metabolism and function
.
Annu Rev Immunol
.
2018
;
36
(
1
):
461
-
488
.
17.
Skokowa
J
,
Dale
DC
,
Touw
IP
,
Zeidler
C
,
Welte
K
.
Severe congenital neutropenias
.
Nat Rev Dis Primers
.
2017
;
3
:
17032
.
18.
Hoogendijk
AJ
,
Pourfarzad
F
,
Aarts
CEM
, et al
.
Dynamic transcriptome-proteome correlation networks reveal human myeloid differentiation and neutrophil-specific programming
.
Cell Rep
.
2019
;
29
(
8
):
2505
-
2519.e4
.
19.
Riffelmacher
T
,
Clarke
A
,
Richter
FC
, et al
.
Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation
.
Immunity
.
2017
;
47
(
3
):
466
-
480.e5
.
20.
Cowland
JB
,
Borregaard
N
.
Granulopoiesis and granules of human neutrophils
.
Immunol Rev
.
2016
;
273
(
1
):
11
-
28
.
21.
Broxmeyer
HE
,
O'Leary
HA
,
Huang
X
,
Mantel
C
.
The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex vivo
.
Curr Opin Hematol
.
2015
;
22
(
4
):
273
-
278
.
22.
Makowski
L
,
Chaib
M
,
Rathmell
JC
.
Immunometabolism: from basic mechanisms to translation
.
Immunol Rev
.
2020
;
295
(
1
):
5
-
14
.
23.
Hay
SB
,
Ferchen
K
,
Chetal
K
,
Grimes
HL
,
Salomonis
N
.
The Human Cell Atlas bone marrow single-cell interactive web portal
.
Exp Hematol
.
2018
;
68
:
51
-
61
.
24.
Chen
CC
,
Yu
W
,
Alikarami
F
, et al
.
Single-cell multiomics reveals increased plasticity, resistant populations, and stem-cell–like blasts in KMT2A -rearranged leukemia
.
Blood
.
2022
;
139
(
14
):
2198
-
2211
.
25.
Stuart
T
,
Butler
A
,
Hoffman
P
, et al
.
Comprehensive integration of single-cell data
.
Cell
.
2019
;
177
(
7
):
1888
-
1902.e21
.
26.
Yu
G
,
Wang
LG
,
Han
Y
,
He
QY
.
ClusterProfiler: an R package for comparing biological themes among gene clusters
.
Omi. A J. Integr. Biol
.
2012
;
16
(
5
):
284
-
287
.
27.
Wu
T
,
Hu
E
,
Xu
S
, et al
.
clusterProfiler 4.0: a universal enrichment tool for interpreting omics data
.
Innovation
.
2021
;
2
(
3
):
100141
.
28.
Grieshaber-Bouyer
R
,
Radtke
FA
,
Cunin
P
, et al
.
The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments
.
Nat Commun
.
2021
;
12
:
2856
. 21.
29.
Bak
RO
,
Dever
DP
,
Porteus
MH
.
CRISPR/Cas9 genome editing in human hematopoietic stem cells
.
Nat Protoc
.
2018
;
13
(
2
):
358
-
376
.
30.
Bak
RO
,
Dever
DP
,
Reinisch
A
,
Cruz Hernandez
D
,
Majeti
R
,
Porteus
MH
.
Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6
.
Elife
.
2017
;
6
:
e27873
. 19.
31.
Tiyaboonchai
A
,
Mac
H
,
Shamsedeen
R
, et al
.
Utilization of the AAVS1 safe harbor locus for hematopoietic specific transgene expression and gene knockdown in human ES cells
.
Stem Cell Res
.
2014
;
12
(
3
):
630
-
637
.
32.
Matlashov
ME
,
Shcherbakova
DM
,
Alvelid
J
, et al
.
A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales
.
Nat Commun
.
2020
;
11
:
239
. 12.
33.
Kamiyama
D
,
Sekine
S
,
Barsi-Rhyne
B
, et al
.
Versatile protein tagging in cells with split fluorescent protein
.
Nat Commun
.
2016
;
7
:
11046
. 9.
34.
Loftus
RM
,
Finlay
DK
.
Immunometabolism: cellular metabolism turns immune regulator
.
J Biol Chem
.
2016
;
291
:
1
-
10
.
35.
Al-Khami
AA
,
Rodriguez
PC
,
Ochoa
AC
.
Energy metabolic pathways control the fate and function of myeloid immune cells
.
J Leukoc Biol
.
2017
;
102
(
2
):
369
-
380
.
36.
Westermann
B
.
Mitochondrial fusion and fission in cell life and death
.
Nat Rev Mol Cell Biol
.
2010
;
11
(
12
):
872
-
884
.
37.
Yao
CH
,
Wang
R
,
Wang
Y
,
Kung
CP
,
Weber
JD
,
Patti
GJ
.
Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation
.
Elife
.
2019
;
8
:
e41351
.
38.
Adebayo
M
,
Singh
S
,
Singh
AP
,
Dasgupta
S
.
Mitochondrial fusion and fission: the fine-tune balance for cellular homeostasis
.
FASEB J
.
2021
;
35
(
6
):
e21620
.
39.
Fossati
G
,
Moulding
DA
,
Spiller
DG
,
Moots
RJ
,
White
MRH
,
Edwards
SW
.
The mitochondrial network of human neutrophils: role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis
.
J Immunol
.
2003
;
170
(
4
):
1964
-
1972
.
40.
Dunham-Snary
KJ
,
Surewaard
BG
,
Mewburn
JD
, et al
.
Mitochondria in human neutrophils mediate killing of Staphylococcus aureus
.
Redox Biol
.
2022
;
49
:
102225
.
41.
Agathocleous
M
,
Meacham
CE
,
Burgess
RJ
, et al
.
Ascorbate regulates haematopoietic stem cell function and leukaemogenesis
.
Nature
.
2017
;
549
(
7673
):
476
-
481
.
42.
DeVilbiss
AW
,
Zhao
Z
,
Martin-Sandoval
MS
, et al
.
Metabolomic profiling of rare cell populations isolated by flow cytometry from tissues
.
Elife
.
2021
;
10
:
1
-
23
.
43.
Xiao
W
,
Wang
RS
,
Handy
DE
,
Loscalzo
J
.
NAD(H) and NADP(H) redox couples and cellular energy metabolism
.
Antioxid Redox Signal
.
2018
;
28
(
3
):
251
-
272
.
44.
Xiao
W
,
Loscalzo
J
.
Metabolic responses to reductive stress
.
Antioxid Redox Signal
.
2020
;
32
(
18
):
1330
-
1347
.
45.
Pérez-Torres
I
,
Guarner-Lans
V
,
Rubio-Ruiz
ME
.
Reductive stress in inflammation-associated diseases and the pro-oxidant effect of antioxidant agents
.
Int J Mol Sci
.
2017
;
18
(
10
):
2098
. 26.
46.
González
A
,
Hall
MN
,
Lin
S-CC
,
Hardie
DG
.
AMPK and TOR: the Yin and Yang of cellular nutrient sensing and growth control
.
Cell Metabol
.
2020
;
31
(
3
):
472
-
492
.
47.
Krüger
A
,
Grüning
NM
,
Wamelink
MMC
, et al
.
The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response
.
Antioxid Redox Signal
.
2011
;
15
(
2
):
311
-
324
.
48.
Pedley
AM
,
Benkovic
SJ
.
A new view into the regulation of purine metabolism: the purinosome
.
Trends Biochem Sci
.
2017
;
42
(
2
):
141
-
154
.
49.
Wu
Z
,
Bezwada
D
,
Harris
RC
, et al
.
Electron transport chain inhibition increases cellular dependence on purine transport and salvage
.
bioRxiv
.
Preprint posted online 11 May 2023
.
50.
Gowans
GJ
,
Hawley
SA
,
Ross
FA
,
Hardie
DG
.
AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation
.
Cell Metabol
.
2013
;
18
(
4
):
556
-
566
.
51.
Liu
Q
,
Chang
JW
,
Wang
J
, et al
.
Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h] [1,6]naphthyridin-2(1 H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer
.
J Med Chem
.
2010
;
53
(
19
):
7146
-
7155
.
52.
Daignan-Fornier
B
,
Pinson
B
.
5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5’-monophosphate (AICAR), a highly conserved purine intermediate with multiple effects
.
Metabolites
.
2012
;
2
:
292
-
302
.
53.
Sullivan
LB
,
Gui
DY
,
Hosios
AM
,
Bush
LN
,
Freinkman
E
,
Vander Heiden
MG
.
Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells
.
Cell
.
2015
;
162
(
3
):
552
-
563
.
54.
Birsoy
K
,
Wang
T
,
Chen
WW
,
Freinkman
E
,
Abu-Remaileh
M
,
Sabatini
DM
.
An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
.
Cell
.
2015
;
162
(
3
):
540
-
551
.
55.
Titov
DV
,
Cracan
V
,
Goodman
RP
,
Peng
J
,
Grabarek
Z
,
Mootha
VK
.
Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio
.
Science
.
2016
;
352
(
6282
):
231
-
235
.
56.
Qi
L
,
Martin-Sandoval
MS
,
Merchant
S
, et al
.
Aspartate availability limits hematopoietic stem cell function during hematopoietic regeneration
.
Cell Stem Cell
.
2021
;
28
(
11
):
1982
-
1999.e8
.
57.
An
S
,
Kumar
R
,
Sheets
ED
,
Benkovic
SJ
.
Reversible compartmentalization of de novo purine biosynthetic complexes in living cells
.
Chemtracts
.
2008
;
20
:
501
-
502
.
58.
French
JB
,
Jones
SA
,
Deng
H
, et al
.
Spatial colocalization and functional link of purinosomes with mitochondria
.
Science
.
2016
;
351
(
6274
):
733
-
737
.
59.
Pareek
V
,
Tian
H
,
Winograd
N
,
Benkovic
SJ
.
Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells
.
Science
.
2020
;
368
(
6488
):
283
-
290
.
60.
Admyre
T
,
Amrot-Fors
L
,
Andersson
M
, et al
.
Inhibition of AMP deaminase activity does not improve glucose control in rodent models of insulin resistance or diabetes
.
Chem Biol
.
2014
;
21
(
11
):
1486
-
1496
.
61.
Henderson
JF
,
Brox
LW
,
Kelley
WN
,
Rosenbloom
FM
,
Seegmiller
JE
.
Kinetic studies of hypoxanthine-guanine phosphoribosyltransferase
.
J Biol Chem
.
1968
;
243
(
10
):
2514
-
2522
.
62.
Simili
M
,
Colella
CM
,
Debatisse
M
,
Buttin
G
.
Increased inhibition of HGPRT by IMP and GMP and higher levels of PRPP in an 8-azaguanine - HAT resistant mutant of Chinese hamster cells
.
Cell Biol Int Rep
.
1983
;
7
(
2
):
121
-
128
.
63.
Zhao
H
,
Chiaro
CR
,
Zhang
L
, et al
.
Quantitative analysis of purine nucleotides indicates that purinosomes increase de novo purine biosynthesis
.
J Biol Chem
.
2015
;
290
(
11
):
6705
-
6713
.
64.
Diehl
FF
,
Miettinen
TP
,
Elbashir
R
, et al
.
Nucleotide imbalance decouples cell growth from cell proliferation
.
Nat Cell Biol
.
2022
;
24
(
8
):
1252
-
1264
.
65.
Morganti
C
,
Cabezas-Wallscheid
N
,
Ito
K
.
Metabolic regulation of hematopoietic stem cells
.
HemaSphere
.
2022
;
6
(
7
):
e740
.
66.
Nakamura-Ishizu
A
,
Ito
K
,
Suda
T
.
Hematopoietic stem cell metabolism during development and aging
.
Dev Cell
.
2020
;
54
(
2
):
239
-
255
.
67.
Kohli
L
,
Passegué
E
.
Surviving change: the metabolic journey of hematopoietic stem cells
.
Trends Cell Biol
.
2014
;
24
(
8
):
479
-
487
.
68.
Ravera
S
,
Dufour
C
,
Cesaro
S
, et al
.
Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome
.
Sci Rep
.
2016
;
6
:
25441
.
69.
Ravera
S
,
Vaccaro
D
,
Cuccarolo
P
, et al
.
Mitochondrial respiratory chain complex I defects in Fanconi anemia complementation group A
.
Biochimie
.
2013
;
95
(
10
):
1828
-
1837
.
70.
Degan
P
,
Ravera
S
,
Cappelli
E
.
Why is an energy metabolic defect the common outcome in BMFS?
.
Cell Cycle
.
2016
;
15
(
19
):
2571
-
2575
.
71.
Danilova
N
,
Sakamoto
KM
,
Lin
S
.
Ribosomal protein L11 mutation in zebrafish leads to haematopoietic and metabolic defects
.
Br J Haematol
.
2011
;
152
(
2
):
217
-
228
.
72.
Lee
PY
,
Sykes
DB
,
Ameri
S
, et al
.
The metabolic regulator mTORC1 controls terminal myeloid differentiation
.
Sci Immunol
.
2017
;
2
(
11
):
eaam6641
. 12.
73.
Ruvidić
R
,
Jelić
S
.
Haematological aspects of drug-induced agranulocytosis
.
Scand J Haematol
.
1972
;
9
(
1
):
18
-
27
.
74.
Jamal
I
,
Shuchismita
S
,
Choudhary
V
.
Vancomycin-induced maturation arrest with reactive promyelocyte proliferation: a diagnostic and therapeutic challenge
.
J Lab Physicians
.
2022
;
15
(
01
):
149
-
151
.
75.
Lorenzo-Villalba
N
,
Alonso-Ortiz
MB
,
Maouche
Y
,
Zulfiqar
AA
,
Andrès
E
.
Idiosyncratic drug-induced neutropenia and agranulocytosis in elderly patients
.
J Clin Med
.
2020
;
9
(
6
):
1808
. 13.
76.
Ghaloul-Gonzalez
L
,
Mohsen
AW
,
Karunanidhi
A
, et al
.
Reticular dysgenesis and mitochondriopathy induced by adenylate kinase 2 deficiency with atypical presentation
.
Sci Rep
.
2019
;
9
:
15739
. 8.
77.
Rissone
A
,
Jimenez
E
,
Bishop
K
, et al
.
A model for reticular dysgenesis shows impaired sensory organ development and hair cell regeneration linked to cellular stress
.
Dis. Model. Mech
.
2019
;
12
(
12
):
dmm040170
.
78.
Peris
E
,
Micallef
P
,
Paul
A
, et al
.
Antioxidant treatment induces reductive stress associated with mitochondrial dysfunction in adipocytes
.
J Biol Chem
.
2019
;
294
(
7
):
2340
-
2352
.
79.
Korge
P
,
Calmettes
G
,
Weiss
JN
.
Increased reactive oxygen species production during reductive stress: the roles of mitochondrial glutathione and thioredoxin reductases
.
Biochim Biophys Acta
.
2015
;
1847
(
6-7
):
514
-
525
.
80.
Pryde
KR
,
Hirst
J
.
Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer
.
J Biol Chem
.
2011
;
286
(
20
):
18056
-
18065
.
81.
Wang
J
,
Saiki
N
,
Tanimura
A
, et al
.
UK-5099, a mitochondrial pyruvate carrier inhibitor, recovers impaired neutrophil maturation caused by AK2 deficiency in human pluripotent stem cell models
.
Biochem Biophys Res Commun
.
2023
;
687
:
149211
.
82.
Ivanovs
A
,
Rybtsov
S
,
Ng
ES
,
Stanley
EG
,
Elefanty
AG
,
Medvinsky
A
.
Human haematopoietic stem cell development: from the embryo to the dish
.
Development
.
2017
;
144
(
13
):
2323
-
2337
.
You do not currently have access to this content.
Sign in via your Institution