• Transcriptomic analysis of NHP and patient-derived T cells following CAR T-cell infusion identified activated CAR bystander CD8+ T cells.

  • Cytokine exposure–induced bystander-like CD8+ T cells capable of T-cell receptor–independent cytotoxic killing of leukemia cells.

Abstract

Chimeric antigen receptor (CAR) T cells hold promise as a therapy for B-cell–derived malignancies, and despite their impressive initial response rates, a significant proportion of patients ultimately experience relapse. Although recent studies have explored the mechanisms of in vivo CAR T-cell function, little is understood about the activation of surrounding CARneg bystander T cells and their potential to enhance tumor responses. We performed single-cell RNA sequencing on nonhuman primate (NHP) and patient-derived T cells to identify the phenotypic and transcriptomic hallmarks of bystander activation of CARneg T cells following B-cell–targeted CAR T-cell therapy. Using a highly translatable CD20 CAR NHP model, we observed a distinct population of activated CD8+ CARneg T cells emerging during CAR T-cell expansion. These bystander CD8+ CARneg T cells exhibited a unique transcriptional signature with upregulation of natural killer-cell markers (KIR3DL2, CD160, and KLRD1), chemokines, and chemokine receptors (CCL5, XCL1, and CCR9), and downregulation of naïve T-cell-associated genes (SELL and CD28). A transcriptionally similar population was identified in patients after a tisagenlecleucel infusion. Mechanistic studies revealed that interleukin-2 (IL-2) and IL-15 exposure induced bystander-like CD8+ T cells in a dose-dependent manner. In vitro activated and patient-derived T cells with a bystander phenotype efficiently killed leukemic cells through a T-cell receptor–independent mechanism. Collectively, to our knowledge, these data provide the first comprehensive identification and profiling of CARneg bystander CD8+ T cells following B-cell–targeting CAR T-cell therapy and suggest a novel mechanism through which CAR T-cell infusion might trigger enhanced antileukemic responses. Patient samples were obtained from the trial #NCT03369353, registered at www.ClinicalTrials.gov.

1.
Frigault
MJ
,
Maus
MV
.
State of the art in CAR T cell therapy for CD19+ B cell malignancies
.
J Clin Invest
.
2020
;
130
(
4
):
1586
-
1594
.
2.
Boyiadzis
MM
,
Dhodapkar
MV
,
Brentjens
RJ
, et al
.
Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance
.
J Immunother Cancer
.
2018
;
6
(
1
):
137
.
3.
Bachy
E
,
Le Gouill
S
,
Di Blasi
R
, et al
.
A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma
.
Nat Med
.
2022
;
28
(
10
):
2145
-
2154
.
4.
Fabrizio
VA
,
Phillips
CL
,
Lane
A
, et al
.
Tisagenlecleucel outcomes in relapsed/refractory extramedullary ALL: a pediatric real world CAR consortium report
.
Blood Adv
.
2022
;
6
(
2
):
600
-
610
.
5.
Majzner
RG
,
Mackall
CL
.
Clinical lessons learned from the first leg of the CAR T cell journey
.
Nat Med
.
2019
;
25
(
9
):
1341
-
1355
.
6.
Haradhvala
NJ
,
Leick
MB
,
Maurer
K
, et al
.
Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma
.
Nat Med
.
2022
;
28
(
9
):
1848
-
1859
.
7.
Wilson
TL
,
Kim
H
,
Chou
CH
, et al
.
Common trajectories of highly effective CD19-specific CAR T cells identified by endogenous T-cell receptor lineages
.
Cancer Discov
.
2022
;
12
(
9
):
2098
-
2119
.
8.
Jackson
Z
,
Hong
C
,
Schauner
R
, et al
.
Sequential single-cell transcriptional and protein marker profiling reveals TIGIT as a marker of CD19 CAR-T cell dysfunction in patients with non-Hodgkin lymphoma
.
Cancer Discov
.
2022
;
12
(
8
):
1886
-
1903
.
9.
Sheih
A
,
Voillet
V
,
Hanafi
LA
, et al
.
Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy
.
Nat Commun
.
2020
;
11
(
1
):
219
.
10.
Deng
Q
,
Han
G
,
Puebla-Osorio
N
, et al
.
Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas
.
Nat Med
.
2020
;
26
(
12
):
1878
-
1887
.
11.
Anderson
ND
,
Birch
J
,
Accogli
T
, et al
.
Transcriptional signatures associated with persisting CD19 CAR-T cells in children with leukemia
.
Nat Med
.
2023
;
29
(
7
):
1700
-
1709
.
12.
Chen
PH
,
Lipschitz
M
,
Weirather
JL
, et al
.
Activation of CAR and non-CAR T cells within the tumor microenvironment following CAR T cell therapy
.
JCI Insight
.
2020
;
5
(
12
):
e134612
.
13.
Kim
TS
,
Shin
EC
.
The activation of bystander CD8(+) T cells and their roles in viral infection
.
Exp Mol Med
.
2019
;
51
(
12
):
1
-
9
.
14.
Meier
SL
,
Satpathy
AT
,
Wells
DK
.
Bystander T cells in cancer immunology and therapy
.
Nat Cancer
.
2022
;
3
(
2
):
143
-
155
.
15.
Maurice
NJ
,
Taber
AK
,
Prlic
M
.
The ugly duckling turned to swan: a change in perception of bystander-activated memory CD8 T cells
.
J Immunol
.
2021
;
206
(
3
):
455
-
462
.
16.
Verneris
MR
,
Karimi
M
,
Baker
J
,
Jayaswal
A
,
Negrin
RS
.
Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells
.
Blood
.
2004
;
103
(
8
):
3065
-
3072
.
17.
Lerner
EC
,
Woroniecka
KI
,
D'Anniballe
VM
, et al
.
CD8(+) T cells maintain killing of MHC-I-negative tumor cells through the NKG2D-NKG2DL axis
.
Nat Cancer
.
2023
;
4
(
9
):
1258
-
1272
.
18.
Chu
T
,
Tyznik
AJ
,
Roepke
S
, et al
.
Bystander-activated memory CD8 T cells control early pathogen load in an innate-like, NKG2D-dependent manner
.
Cell Rep
.
2013
;
3
(
3
):
701
-
708
.
19.
Sottile
R
,
Panjwani
MK
,
Lau
CM
, et al
.
Human cytomegalovirus expands a CD8(+) T cell population with loss of BCL11B expression and gain of NK cell identity
.
Sci Immunol
.
2021
;
6
(
63
):
eabe6968
.
20.
Tietze
JK
,
Wilkins
DE
,
Sckisel
GD
, et al
.
Delineation of antigen-specific and antigen-nonspecific CD8(+) memory T-cell responses after cytokine-based cancer immunotherapy
.
Blood
.
2012
;
119
(
13
):
3073
-
3083
.
21.
Taraseviciute
A
,
Tkachev
V
,
Ponce
R
, et al
.
Chimeric antigen receptor T cell-mediated neurotoxicity in nonhuman primates
.
Cancer Discov
.
2018
;
8
(
6
):
750
-
763
.
22.
Badia-I-Mompel
P
,
Velez Santiago
J
,
Braunger
J
, et al
.
decoupleR: ensemble of computational methods to infer biological activities from omics data
.
Bioinform Adv
.
2022
;
2
(
1
):
vbac016
.
23.
Abbas
AR
,
Wolslegel
K
,
Seshasayee
D
,
Modrusan
Z
,
Clark
HF
.
Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus
.
PLoS One
.
2009
;
4
(
7
):
e6098
.
24.
Kaech
SM
,
Hemby
S
,
Kersh
E
,
Ahmed
R
.
Molecular and functional profiling of memory CD8 T cell differentiation
.
Cell
.
2002
;
111
(
6
):
837
-
851
.
25.
Lopez
R
,
Regier
J
,
Cole
MB
,
Jordan
MI
,
Yosef
N
.
Deep generative modeling for single-cell transcriptomics
.
Nat Methods
.
2018
;
15
(
12
):
1053
-
1058
.
26.
Lafi
A
,
Parry
JM
.
Cytogenetic activities of tobacco particulate matter (TPM) derived from a low to middle tar British cigarette
.
Mutat Res
.
1988
;
201
(
2
):
365
-
374
.
27.
Gerdemann
U
,
Fleming
RA
,
Kaminski
J
, et al
.
Identification and tracking of alloreactive T cell clones in rhesus macaques through the RM-scTCR-seq platform
.
Front Immunol
.
2021
;
12
:
804932
.
28.
Morisita
M
.
Measuring of interspecific association and similarity between communities. Memoirs of the Faculty of Science, Kyushu Univ. 1959
.
Series E (Biology)
.
1959
(
3
):
65
-
80
.
29.
Gowthaman
R
,
Pierce
BG
.
TCR3d: the T cell receptor structural repertoire database
.
Bioinformatics
.
2019
;
35
(
24
):
5323
-
5325
.
30.
Chronister
WD
,
Crinklaw
A
,
Mahajan
S
, et al
.
TCRMatch: predicting T-cell receptor specificity based on sequence similarity to previously characterized receptors
.
Front Immunol
.
2021
;
12
:
640725
.
31.
Baumeister
SHC
,
Mohan
GS
,
Elhaddad
A
,
Lehmann
L
.
Cytokine release syndrome and associated acute toxicities in pediatric patients undergoing immune effector cell therapy or hematopoietic cell transplantation
.
Front Oncol
.
2022
;
12
:
841117
.
32.
Diorio
C
,
Shraim
R
,
Myers
R
, et al
.
Comprehensive serum proteome profiling of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome patients with B-cell ALL receiving CAR T19
.
Clin Cancer Res
.
2022
;
28
(
17
):
3804
-
3813
.
33.
Leem
G
,
Jeon
M
,
Kim
KW
, et al
.
Tumor-infiltrating bystander CD8(+) T cells activated by IL-15 contribute to tumor control in non-small cell lung cancer
.
Thorax
.
2022
;
77
(
8
):
769
-
780
.
34.
Shin
EC
,
Sung
PS
,
Park
SH
.
Immune responses and immunopathology in acute and chronic viral hepatitis
.
Nat Rev Immunol
.
2016
;
16
(
8
):
509
-
523
.
35.
Maini
MK
,
Boni
C
,
Lee
CK
, et al
.
The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection
.
J Exp Med
.
2000
;
191
(
8
):
1269
-
1280
.
36.
Sckisel
GD
,
Tietze
JK
,
Zamora
AE
, et al
.
Influenza infection results in local expansion of memory CD8(+) T cells with antigen non-specific phenotype and function
.
Clin Exp Immunol
.
2014
;
175
(
1
):
79
-
91
.
37.
Doisne
JM
,
Urrutia
A
,
Lacabaratz-Porret
C
, et al
.
CD8+ T cells specific for EBV, cytomegalovirus, and influenza virus are activated during primary HIV infection
.
J Immunol
.
2004
;
173
(
4
):
2410
-
2418
.
38.
Bangs
SC
,
McMichael
AJ
,
Xu
XN
.
Bystander T cell activation--implications for HIV infection and other diseases
.
Trends Immunol
.
2006
;
27
(
11
):
518
-
524
.
39.
Klampatsa
A
,
Leibowitz
MS
,
Sun
J
,
Liousia
M
,
Arguiri
E
,
Albelda
SM
.
Analysis and augmentation of the immunologic bystander effects of CAR T cell therapy in a syngeneic mouse cancer model
.
Mol Ther Oncolytics
.
2020
;
18
:
360
-
371
.
40.
Zhang
X
,
Zhang
Y
,
Liu
H
, et al
.
IL-15 induced bystander activation of CD8(+) T cells may mediate endothelium injury through NKG2D in Hantan virus infection
.
Front Cell Infect Microbiol
.
2022
;
12
:
1084841
.
41.
Upadhyay
R
,
Boiarsky
JA
,
Pantsulaia
G
, et al
.
A critical role for Fas-mediated off-target tumor killing in T-cell immunotherapy
.
Cancer Discov
.
2021
;
11
(
3
):
599
-
613
.
42.
Hong
LK
,
Chen
Y
,
Smith
CC
, et al
.
CD30-redirected chimeric antigen receptor T cells target CD30(+) and CD30(-) embryonal carcinoma via antigen-dependent and Fas/FasL interactions
.
Cancer Immunol Res
.
2018
;
6
(
10
):
1274
-
1287
.
43.
Ataca Atilla
P
,
McKenna
MK
,
Tashiro
H
, et al
.
Modulating TNFalpha activity allows transgenic IL15-Expressing CLL-1 CAR T cells to safely eliminate acute myeloid leukemia
.
J Immunother Cancer
.
2020
;
8
(
2
):
e001229
.
44.
Mu-Mosley
H
,
Ostermann
L
,
Muftuoglu
M
, et al
.
Transgenic expression of IL15 retains CD123-redirected T cells in a less differentiated state resulting in improved anti-AML activity in autologous AML PDX models
.
Front Immunol
.
2022
;
13
:
880108
.
45.
Heczey
A
,
Xu
X
,
Courtney
AN
, et al
.
Anti-GD2 CAR-NKT cells in relapsed or refractory neuroblastoma: updated phase 1 trial interim results
.
Nat Med
.
2023
;
29
(
6
):
1379
-
1388
.
46.
Hirayama
AV
,
Chou
CK
,
Miyazaki
T
, et al
.
A novel polymer-conjugated human IL-15 improves efficacy of CD19-targeted CAR T-cell immunotherapy
.
Blood Adv
.
2023
;
7
(
11
):
2479
-
2493
.
You do not currently have access to this content.
Sign in via your Institution