Abstract

The DNA damage response (DDR) encompasses the detection and repair of DNA lesions and is fundamental to the maintenance of genome integrity. Germ line DDR alterations underlie hereditary chromosome instability syndromes by promoting the acquisition of pathogenic structural variants in hematopoietic cells, resulting in increased predisposition to hematologic malignancies. Also frequent in hematologic malignancies are somatic mutations of DDR genes, typically arising from replication stress triggered by oncogene activation or deregulated tumor proliferation that provides a selective pressure for DDR loss. These defects impair homology–directed DNA repair or replication stress response, leading to an excessive reliance on error-prone DNA repair mechanisms that results in genomic instability and tumor progression. In hematologic malignancies, loss-of-function DDR alterations confer clonal growth advantage and adverse prognostic impact but may also provide therapeutic opportunities. Selective targeting of functional dependencies arising from these defects could achieve synthetic lethality, a therapeutic concept exemplified by inhibition of poly-(adenosine 5′-diphosphate ribose) polymerase or the ataxia telangiectasia and Rad 3 related-CHK1-WEE1 axis in malignancies harboring the BRCAness phenotype or genetic defects that increase replication stress. Furthermore, the role of DDR defects as a source of tumor immunogenicity, as well as their impact on the cross talk between DDR, inflammation, and tumor immunity are increasingly recognized, thus providing rationale for combining DDR modulation with immune modulation. The nature of the DDR–immune interface and the cellular vulnerabilities conferred by DDR defects may nonetheless be disease-specific and remain incompletely understood in many hematologic malignancies. Their comprehensive elucidation will be critical for optimizing therapeutic strategies to target DDR defects in these diseases.

1.
Taylor
AMR
,
Rothblum-Oviatt
C
,
Ellis
NA
, et al
.
Chromosome instability syndromes
.
Nat Rev Dis Primers
.
2019
;
5
(
1
):
64
-
83
.
2.
Langevin
F
,
Crossan
GP
,
Rosado
IV
,
Arends
MJ
,
Patel
KJ
.
Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice
.
Nature
.
2011
;
475
(
7354
):
53
-
58
.
3.
Ceccaldi
R
,
Parmar
K
,
Mouly
E
, et al
.
Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells
.
Cell Stem Cell
.
2012
;
11
(
1
):
36
-
49
.
4.
Walter
D
,
Lier
A
,
Geiselhart
A
, et al
.
Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells
.
Nature
.
2015
;
520
(
7548
):
549
-
552
.
5.
Webster
ALH
,
Sanders
MA
,
Patel
K
, et al
.
Genomic signature of Fanconi anaemia DNA repair pathway deficiency in cancer
.
Nature
.
2022
;
612
(
7940
):
495
-
502
.
6.
Sebert
M
,
Gachet
S
,
Leblanc
T
, et al
.
Clonal hematopoiesis driven by chromosome 1q/MDM4 trisomy defines a canonical route toward leukemia in Fanconi anemia
.
Cell Stem Cell
.
2023
;
30
(
2
):
153
-
170.e9
.
7.
Gao
Y
,
Guitton-Sert
L
,
Dessapt
J
, et al
.
A CRISPR-Cas9 screen identifies EXO1 as a formaldehyde resistance gene
.
Nat Commun
.
2023
;
14
(
1
):
381
-
400
.
8.
Chang
EY
,
Tsai
S
,
Aristizabal
MJ
, et al
.
MRE11-RAD50-NBS1 promotes Fanconi anemia R-loop suppression at transcription-replication conflicts
.
Nat Commun
.
2019
;
10
(
1
):
4265
-
4279
.
9.
Rotheneder
M
,
Stakyte
K
,
van de Logt
E
, et al
.
Cryo-EM structure of the Mre11-Rad50-Nbs1 complex reveals the molecular mechanism of scaffolding functions
.
Mol Cell
.
2023
;
83
(
2
):
167
-
185.e9
.
10.
Fan
G
,
Sun
L
,
Meng
L
, et al
.
The ATM and ATR kinases regulate centrosome clustering and tumor recurrence by targeting KIFC1 phosphorylation
.
Nat Commun
.
2021
;
12
(
1
):
20
-
35
.
11.
Einig
E
,
Jin
C
,
Andrioletti
V
,
Macek
B
.
Popov N RNAPII-dependent ATM signaling at collisions with replication forks
.
Nat Commun
.
2023
;
14
(
1
):
5147
-
5163
.
12.
Kim
J
,
Woo
S
,
de Gusmao
CM
, et al
.
A framework for individualized splice-switching oligonucleotide therapy
.
Nature
.
2023
;
619
(
7971
):
828
-
836
.
13.
Albers
S
,
Allen
EC
,
Bharti
N
, et al
.
Engineered tRNAs suppress nonsense mutations in cells and in vivo
.
Nature
.
2023
;
618
(
7966
):
842
-
848
.
14.
Xue
C
,
Salunkhe
SJ
,
Tomimatsu
N
, et al
.
Bloom helicase mediates formation of large single-stranded DNA loops during DNA end processing
.
Nat Commun
.
2022
;
13
(
1
):
2248
-
2263
.
15.
Hodson
C
,
Low
JKK
,
van Twest
S
, et al
.
Mechanism of bloom syndrome complex assembly required for double Holliday junction dissolution and genome stability
.
Proc Natl Acad Sci U S A
.
2022
;
119
(
6
):
e2109093119
.
16.
Rudd
MF
,
Sellick
GS
,
Webb
EL
,
Catovsky
D
,
Houlston
RS
.
Variants in the ATM-BRCA2-CHEK2 axis predispose to chronic lymphocytic leukemia
.
Blood
.
2006
;
108
(
2
):
638
-
644
.
17.
Tiao
G
,
Improgo
MR
,
Kasar
S
, et al
.
Rare germline variants in ATM are associated with chronic lymphocytic leukemia
.
Leukemia
.
2017
;
31
(
10
):
2244
-
2247
.
18.
Lampson
BL
,
Gupta
A
,
Tyekucheva
S
, et al
.
Rare germline ATM variants influence the development of chronic lymphocytic leukemia
.
J Clin Oncol
.
2023
;
41
(
5
):
1116
-
1128
.
19.
Janiszewska
H
,
Bak
A
,
Pilarska
M
, et al
.
A risk of essential thrombocythemia in carriers of constitutional CHEK2 gene mutations
.
Haematologica
.
2012
;
97
(
3
):
366
-
370
.
20.
Yang
F
,
Long
N
,
Anekpuritanang
T
, et al
.
Identification and prioritization of myeloid malignancy germline variants in a large cohort of adult patients with AML
.
Blood
.
2022
;
139
(
8
):
1208
-
1221
.
21.
de Miranda
NF
,
Peng
R
,
Georgiou
K
, et al
.
DNA repair genes are selectively mutated in diffuse large B cell lymphomas
.
J Exp Med
.
2013
;
210
(
9
):
1729
-
1742
.
22.
Leeksma
OC
,
de Miranda
NF
,
Veelken
H
.
Germline mutations predisposing to diffuse large B-cell lymphoma
.
Blood Cancer J
.
2017
;
7
(
3
):
e541
.
23.
Knisbacher
BA
,
Lin
Z
,
Hahn
CK
, et al
.
Molecular map of chronic lymphocytic leukemia and its impact on outcome
.
Nat Genet
.
2022
;
54
(
11
):
1664
-
1674
.
24.
Yi
S
,
Yan
Y
,
Jin
M
, et al
.
Genomic and transcriptomic profiling reveals distinct molecular subsets associated with outcomes in mantle cell lymphoma
.
J Clin Invest
.
2022
;
132
(
3
):
e153283
.
25.
Kiel
MJ
,
Velusamy
T
,
Rolland
D
, et al
.
Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia
.
Blood
.
2014
;
124
(
9
):
1460
-
1472
.
26.
Reddy
A
,
Zhang
J
,
Davis
NS
, et al
.
Genetic and functional drivers of diffuse large B cell lymphoma
.
Cell
.
2017
;
171
(
2
):
481
-
494.e15
.
27.
Bonfiglio
F
,
Bruscaggin
A
,
Guidetti
F
, et al
.
Genetic and phenotypic attributes of splenic marginal zone lymphoma
.
Blood
.
2022
;
139
(
5
):
732
-
747
.
28.
Walker
BA
,
Mavrommatis
K
,
Wardell
CP
, et al
.
Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma
.
Blood
.
2018
;
132
(
6
):
587
-
597
.
29.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
30.
Ochi
Y
,
Yoshida
K
,
Huang
YJ
, et al
.
Clonal evolution and clinical implications of genetic abnormalities in blastic transformation of chronic myeloid leukaemia
.
Nat Commun
.
2021
;
12
(
1
):
2833
-
2845
.
31.
Brady
SW
,
Roberts
KG
,
Gu
Z
, et al
.
The genomic landscape of pediatric acute lymphoblastic leukemia
.
Nat Genet
.
2022
;
54
(
9
):
1376
-
1389
.
32.
Dreval
K
,
Hilton
LK
,
Cruz
M
, et al
.
Genetic subdivisions of follicular lymphoma defined by distinct coding and noncoding mutation patterns
.
Blood
.
2023
;
142
(
6
):
561
-
573
.
33.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
34.
Padella
A
,
Fontana
MC
,
Marconi
G
, et al
.
Loss of PALB2 predicts poor prognosis in acute myeloid leukemia and suggests novel therapeutic strategies targeting the DNA repair pathway
.
Blood Cancer J
.
2021
;
11
(
1
):
7
-
11
.
35.
Tyner
JW
,
Tognon
CE
,
Bottomly
D
, et al
.
Functional genomic landscape of acute myeloid leukaemia
.
Nature
.
2018
;
562
(
7728
):
526
-
531
.
36.
Zimmermann
M
,
Murina
O
,
Reijns
MAM
, et al
.
CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions
.
Nature
.
2018
;
559
(
7713
):
285
-
289
.
37.
Yin
S
,
Gambe
RG
,
Sun
J
, et al
.
A murine model of chronic lymphocytic leukemia based on B cell-restricted expression of Sf3b1 mutation and atm deletion
.
Cancer Cell
.
2019
;
35
(
2
):
283
-
296.e5
.
38.
Knittel
G
,
Rehkämper
T
,
Korovkina
D
, et al
.
Two mouse models reveal an actionable PARP1 dependence in aggressive chronic lymphocytic leukemia
.
Nat Commun
.
2017
;
8
(
1
):
153
-
165
.
39.
Hathcock
KS
,
Padilla-Nash
HM
,
Camps
J
, et al
.
ATM deficiency promotes development of murine B-cell lymphomas that resemble diffuse large B-cell lymphoma in humans
.
Blood
.
2015
;
126
(
20
):
2291
-
2301
.
40.
Murga
M
,
Campaner
S
,
Lopez-Contreras
AJ
, et al
.
Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors
.
Nat Struct Mol Biol
.
2011
;
18
(
12
):
1331
-
1335
.
41.
Stoddart
A
,
Fernald
AA
,
Wang
J
, et al
.
Haploinsufficiency of del(5q) genes, Egr1 and Apc, cooperate with Tp53 loss to induce acute myeloid leukemia in mice
.
Blood
.
2014
;
123
(
7
):
1069
-
1078
.
42.
Galeev
R
,
Baudet
A
,
Kumar
P
, et al
.
Genome-wide RNAi screen identifies cohesin genes as modifiers of renewal and differentiation in human HSCs
.
Cell Rep
.
2016
;
14
(
12
):
2988
-
3000
.
43.
Reijns
MAM
,
Parry
DA
,
Williams
TC
, et al
.
Signatures of TOP1 transcription-associated mutagenesis in cancer and germline
.
Nature
.
2022
;
602
(
7898
):
623
-
631
.
44.
Hu
B
,
Patel
KP
,
Chen
HC
, et al
.
Association of gene mutations with time-to-first treatment in 384 treatment-I chronic lymphocytic leukaemia patients
.
Br J Haematol
.
2019
;
187
(
3
):
307
-
318
.
45.
Skowronska
A
,
Parker
A
,
Ahmed
G
, et al
.
Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom leukemia research fund chronic lymphocytic leukemia 4 trial
.
J Clin Oncol
.
2012
;
30
(
36
):
4524
-
4532
.
46.
Tausch
E
,
Schneider
C
,
Robrecht
S
, et al
.
Prognostic and predictive impact of genetic markers in patients with CLL treated laparibmabzumab and venetoclax
.
Blood
.
2020
;
135
(
26
):
2402
-
2412
.
47.
Gonzalez
D
,
Martinez
P
,
Wade
R
, et al
.
Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial
.
J Clin Oncol
.
2011
;
29
(
16
):
2223
-
2229
.
48.
Davids
MS
,
Lampson
BL
,
Tyekucheva
S
, et al
.
Acalabrutinib, venetoclax,laparibmabzumab as frontline treatment for chronic lymphocytic leukaemia: a single-arm, open-label, phase 2 study
.
Lancet Oncol
.
2021
;
22
(
10
):
1391
-
1402
.
49.
Huber
H
,
Tausch
E
,
Schneider
C
, et al
.
Final analysis of the CLL2-GIVe trlaparibmabzumab, ibrutinib, and venetoclax for untreated CLL with del(17p)/TP53mut
.
Blood
.
2023
;
142
(
11
):
961
-
972
.
50.
Zenz
T
,
Eichhorst
B
,
Busch
R
, et al
.
TP53 mutation and survival in chronic lymphocytic leukemia
.
J Clin Oncol
.
2010
;
28
(
29
):
4473
-
4479
.
51.
Bernard
E
,
Nannya
Y
,
Hasserjian
RP
, et al
.
Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes
.
Nat Med
.
2020
;
26
(
10
):
1549
-
1556
.
52.
Weinberg
OK
,
Siddon
A
,
Madanat
YF
, et al
.
TP53 mutation defines a unique subgroup within complex karyotype de novo and therapy-related MDS/AML
.
Blood Adv
.
2022
;
6
(
9
):
2847
-
2853
.
53.
Bottomly
D
,
Long
N
,
Schultz
AR
, et al
.
Integrative analysis of drug response and clinical outcome in acute myeloid leukemia
.
Cancer Cell
.
2022
;
40
(
8
):
850
-
864.e9
.
54.
Schneider
C
,
Oellerich
T
,
Baldauf
HM
, et al
.
SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia
.
Nat Med
.
2017
;
23
(
2
):
250
-
255
.
55.
Petermann
E
,
Lan
L
,
Zou
L
.
Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids
.
Nat Rev Mol Cell Biol
.
2022
;
23
(
8
):
521
-
540
.
56.
Chen
L
,
Chen
JY
,
Huang
YJ
, et al
.
The augmented R-Loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations
.
Mol Cell
.
2018
;
69
(
3
):
412
-
425.e6
.
57.
Singh
S
,
Ahmed
D
,
Dolatshad
H
, et al
.
SF3B1 mutations induce R-loop accumulation and DNA damage in MDS and leukemia cells with therapeutic implications
.
Leukemia
.
2020
;
34
(
9
):
2525
-
2530
.
58.
Nguyen
HD
,
Leong
WY
,
Li
W
, et al
.
Spliceosome mutations induce R loop-associated sensitivity to ATR inhibition in myelodysplastic syndromes
.
Cancer Res
.
2018
;
78
(
18
):
5363
-
5374
.
59.
Cusan
M
,
Shen
H
,
Zhang
B
, et al
.
SF3B1 mutation and ATM deletion codrive leukemogenesis via centromeric R-loop dysregulation
.
J Clin Invest
.
2023
;
133
(
17
):
e163325
.
60.
He
Y
,
Pasupala
N
,
Zhi
H
, et al
.
NF-κB-induced R-loop accumulation and DNA damage select for nucleotide excision repair deficiencies in adult T cell leukemia
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
10
):
e2005568118
.
61.
Sollier
J
,
Stork
CT
,
García-Rubio
ML
,
Paulsen
RD
,
Aguilera
A
,
Cimprich
KA
.
Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability
.
Mol Cell
.
2014
;
56
(
6
):
777
-
785
.
62.
Shukla
V
,
Samaniego-Castruita
D
,
Dong
Z
, et al
.
TET deficiency perturbs mature B cell homeostasis and promotes oncogenesis associated with accumulation of G-quadruplex and R-loop structures
.
Nat Immunol
.
2022
;
23
(
1
):
99
-
108
.
63.
McCann
JL
,
Cristini
A
,
Law
EK
, et al
.
APOBEC3B regulates R-loops and promotes transcription-associated mutagenesis in cancer
.
Nat Genet
.
2023
;
55
(
10
):
1721
-
1734
.
64.
Zhao
B
,
Rothenberg
E
,
Ramsden
DA
,
Lieber
MR
.
The molecular basis and disease relevance of non-homologous DNA end joining
.
Nat Rev Mol Cell Biol
.
2020
;
21
(
12
):
765
-
781
.
65.
Poplawski
T
,
Blasiak
J
.
BCR/ABL downregulates DNA-PK(CS)-dependent and upregulates backup non-homologous end joining in leukemic cells
.
Mol Biol Rep
.
2010
;
37
(
5
):
2309
-
2315
.
66.
Dierov
J
,
Dierova
R
,
Carroll
M
.
BCR/ABL translocates to the nucleus and disrupts an ATR-dependent intra-S phase checkpoint
.
Cancer Cell
.
2004
;
5
(
3
):
275
-
285
.
67.
Takacova
S
,
Slany
R
,
Bartkova
J
, et al
.
DNA damage response and inflammatory signaling limit the MLL-ENL-induced leukemogenesis in vivo
.
Cancer Cell
.
2012
;
21
(
4
):
517
-
531
.
68.
Bartek
J
,
Mistrik
M
,
Bartkova
J
.
Thresholds of replication stress signaling in cancer development and treatment
.
Nat Struct Mol Biol
.
2012
;
19
(
1
):
5
-
7
.
69.
Gruber
M
,
Bozic
I
,
Leshchiner
I
, et al
.
Growth dynamics in naturally progressing chronic lymphocytic leukaemia
.
Nature
.
2019
;
570
(
7762
):
474
-
479
.
70.
Ten Hacken
E
,
Clement
K
,
Li
S
, et al
.
High throughput single-cell detection of multiplex CRISPR-edited gene modifications
.
Genome Biol
.
2020
;
21
(
1
):
266
-
276
.
71.
Watson
CJ
,
Papula
AL
,
Poon
GYP
, et al
.
The evolutionary dynamics and fitness landscape of clonal hematopoiesis
.
Science
.
2020
;
367
(
6485
):
1449
-
1454
.
72.
Fabre
MA
,
de Almeida
JG
,
Fiorillo
E
, et al
.
The longitudinal dynamics and natural history of clonal haematopoiesis
.
Nature
.
2022
;
606
(
7913
):
335
-
342
.
73.
Boettcher
S
,
Miller
PG
,
Sharma
R
, et al
.
A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies
.
Science
.
2019
;
365
(
6453
):
599
-
604
.
74.
Samstein
RM
,
Lee
CH
,
Shoushtari
AN
, et al
.
Tumor mutational load predicts survival after immunotherapy across multiple cancer types
.
Nat Genet
.
2019
;
51
(
2
):
202
-
206
.
75.
Germano
G
,
Lamba
S
,
Rospo
G
, et al
.
Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth
.
Nature
.
2017
;
552
(
7683
):
116
-
120
.
76.
Uchihara
Y
,
Permata
TBM
,
Sato
H
, et al
.
DNA damage promotes HLA class I presentation by stimulating a pioneer round of translation-associated antigen production
.
Mol Cell
.
2022
;
82
(
14
):
2557
-
2570.e7
.
77.
Shen
J
,
Ju
Z
,
Zhao
W
, et al
.
ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade
.
Nat Med
.
2018
;
24
(
5
):
556
-
562
.
78.
Crossley
MP
,
Song
C
,
Bocek
MJ
, et al
.
R-loop-derived cytoplasmic RNA-DNA hybrids activate an immune response
.
Nature
.
2023
;
613
(
7942
):
187
-
194
.
79.
Samson
N
,
Ablasser
A
.
The cGAS-STING pathway and cancer
.
Nat Cancer
.
2022
;
3
(
12
):
1452
-
1463
.
80.
Guo
G
,
Gao
M
,
Gao
X
, et al
.
Reciprocal regulation of RIG-I and XRCC4 connects DNA repair with RIG-I immune signaling
.
Nat Commun
.
2021
;
12
(
1
):
2187
-
2201
.
81.
Coquel
F
,
Silva
MJ
,
Técher
H
, et al
.
SAMHD1 acts at stalled replication forks to prevent interferon induction
.
Nature
.
2018
;
557
(
7703
):
57
-
61
.
82.
Zhang
L
,
Dong
H
,
He
X
, et al
.
Targeting SAMHD1 promotes anti-tumor immunity in acute myeloid leukemia
.
Blood
.
2022
;
140
(
Suppl 1
):
679
-
680
.
83.
Schumann
T
,
Ramon
SC
,
Schubert
N
, et al
.
Deficiency for SAMHD1 activates MDA5 in a cGAS/STING-dependent manner
.
J Exp Med
.
2023
;
220
(
1
):
e20220829
.
84.
Maharana
S
,
Kretschmer
S
,
Hunger
S
, et al
.
SAMHD1 controls innate immunity by regulating condensation of immunogenic self RNA
.
Mol Cell
.
2022
;
82
(
19
):
3712
-
3728.e10
.
85.
Hu
M
,
Zhou
M
,
Bao
X
, et al
.
ATM inhibition enhances cancer immunotherapy by promoting mtDNA leakage and cGAS/STING activation
.
J Clin Invest
.
2021
;
131
(
3
):
e139333
.
86.
Mackenzie
KJ
,
Carroll
P
,
Lettice
L
, et al
.
Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response
.
EMBO J
.
2016
;
35
(
8
):
831
-
844
.
87.
Li
J
,
Wang
W
,
Zhang
Y
, et al
.
Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy
.
J Clin Invest
.
2020
;
130
(
5
):
2712
-
2726
.
88.
Wang
L
,
Yang
L
,
Wang
C
, et al
.
Inhibition of the ATM/Chk2 axis promotes cGAS/STING signaling in ARID1A-deficient tumors
.
J Clin Invest
.
2020
;
130
(
11
):
5951
-
5966
.
89.
Ghosh
M
,
Saha
S
,
Bettke
J
, et al
.
Mutant p53 suppresses innate immune signaling to promote tumorigenesis
.
Cancer Cell
.
2021
;
39
(
4
):
494
-
508.e495
.
90.
Shouval
R
,
Alarcon Tomas
A
,
Fein
JA
, et al
.
Impact of TP53 genomic alterations in large B-cell lymphoma treated with CD19-chimeric antigen receptor T-cell therapy
.
J Clin Oncol
.
2022
;
40
(
4
):
369
-
381
.
91.
Izquierdo
E
,
Vorholt
D
,
Blakemore
S
, et al
.
Extracellular vesicles and PD-L1 suppress macrophages, inducing therapy resistance in TP53-deficient B-cell malignancies
.
Blood
.
2022
;
139
(
25
):
3617
-
3629
.
92.
Vadakekolathu
J
,
Minden
MD
,
Hood
T
, et al
.
Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia
.
Sci Transl Med
.
2020
;
12
(
546
):
eaaz0463
.
93.
Vadakekolathu
J
,
Lai
C
,
Reeder
S
, et al
.
TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML
.
Blood Adv
.
2020
;
4
(
20
):
5011
-
5024
.
94.
Dunphy
G
,
Flannery
SM
,
Almine
JF
, et al
.
Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage
.
Mol Cell
.
2018
;
71
(
5
):
745
-
760.e5
.
95.
Riabinska
A
,
Lehrmann
D
,
Jachimowicz
RD
, et al
.
ATM activity in T cells is critical for immune surveillance of lymphoma in vivo
.
Leukemia
.
2020
;
34
(
3
):
771
-
786
.
96.
Rodriguez-Meira
A
,
Norfo
R
,
Wen
S
, et al
.
Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution
.
Nat Genet
.
2023
;
55
(
9
):
1531
-
1541
.
97.
Bryant
HE
,
Schultz
N
,
Thomas
HD
, et al
.
Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase
.
Nature
.
2005
;
434
(
7035
):
913
-
917
.
98.
Farmer
H
,
McCabe
N
,
Lord
CJ
, et al
.
Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy
.
Nature
.
2005
;
434
(
7035
):
917
-
921
.
99.
Lord
CJ
,
Ashworth
A
.
BRCAness revisited
.
Nat Rev Cancer
.
2016
;
16
(
2
):
110
-
120
.
100.
McCabe
N
,
Turner
NC
,
Lord
CJ
, et al
.
Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition
.
Cancer Res
.
2006
;
66
(
16
):
8109
-
8115
.
101.
Molenaar
RJ
,
Radivoyevitch
T
,
Nagata
Y
, et al
.
IDH1/2 mutations sensitize acute myeloid leukemia to PARP inhibition and this is reversed by IDH1/2-mutant inhibitors
.
Clin Cancer Res
.
2018
;
24
(
7
):
1705
-
1715
.
102.
Casorelli
I
,
Tenedini
E
,
Tagliafico
E
, et al
.
Identification of a molecular signature for leukemic promyelocytes and their normal counterparts: Focus on DNA repair genes
.
Leukemia
.
2006
;
20
(
11
):
1978
-
1988
.
103.
Podszywalow-Bartnicka
P
,
Wolczyk
M
,
Kusio-Kobialka
M
, et al
.
Downregulation of BRCA1 protein in BCR-ABL1 leukemia cells depends on stress-triggered TIAR-mediated suppression of translation
.
Cell Cycle
.
2014
;
13
(
23
):
3727
-
3741
.
104.
Tobin
LA
,
Robert
C
,
Rapoport
AP
, et al
.
Targeting abnormal DNA double-strand break repair in tyrosine kinase inhibitor-resistant chronic myeloid leukemias
.
Oncogene
.
2013
;
32
(
14
):
1784
-
1793
.
105.
Esposito
MT
,
Zhao
L
,
Fung
TK
, et al
.
Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors
.
Nat Med
.
2015
;
21
(
12
):
1481
-
1490
.
106.
Tothova
Z
,
Valton
AL
,
Gorelov
RA
, et al
.
Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML
.
JCI Insight
.
2021
;
6
(
3
):
e142149
.
107.
Maifrede
S
,
Nieborowska-Skorska
M
,
Sullivan-Reed
K
, et al
.
Tyrosine kinase inhibitor-induced defects in DNA repair sensitize FLT3(ITD)-positive leukemia cells to PARP1 inhibitors
.
Blood
.
2018
;
132
(
1
):
67
-
77
.
108.
Poh
W
,
Dilley
RL
,
Moliterno
AR
, et al
.
BRCA1 promoter methylation is linked to defective homologous recombination repair and elevated miR-155 to disrupt myeloid differentiation in myeloid malignancies
.
Clin Cancer Res
.
2019
;
25
(
8
):
2513
-
2522
.
109.
Bamezai
S
,
Demir
D
,
Pulikkottil
AJ
, et al
.
TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition
.
Leukemia
.
2021
;
35
(
2
):
389
-
403
.
110.
Weston
VJ
,
Oldreive
CE
,
Skowronska
A
, et al
.
The PARP inhiblaparibparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo
.
Blood
.
2010
;
116
(
22
):
4578
-
4587
.
111.
Quijada-Álamo
M
,
Hernández-Sánchez
M
,
Alonso-Pérez
V
, et al
.
CRISPR/Cas9-generated models uncover therapeutic vulnerabilities of del(11q) CLL cells to dual BCR and PARP inhibition
.
Leukemia
.
2020
;
34
(
6
):
1599
-
1612
.
112.
Gopal
AK
,
Popat
R
,
Mattison
RJ
, et al
.
A phase I trial of talazoparib in patients with advanced hematologic malignancies
.
Int J Hematol Oncol
.
2021
;
10
(
3
):
35
-
47
.
113.
Pratt
G
,
Yap
C
,
Oldreive
C
, et al
.
A multi-centre phase I trial of the PARP inhiblaparibparib in patients with relapsed chronic lymphocytic leukaemia, T-prolymphocytic leukaemia or mantle cell lymphoma
.
Br J Haematol
.
2018
;
182
(
3
):
429
-
433
.
114.
Pratz
KW
,
Rudek
MA
,
Gojo
I
, et al
.
A phase I study of topotecan, carboplatin and the PARP inhibitor veliparib in acute leukemias, aggressive myeloproliferative neoplasms, and chronic myelomonocytic leukemia
.
Clin Cancer Res
.
2017
;
23
(
4
):
899
-
907
.
115.
Gojo
I
,
Beumer
JH
,
Pratz
KW
, et al
.
A phase 1 study of the PARP inhibitor veliparib in combination with temozolomide in acute myeloid leukemia
.
Clin Cancer Res
.
2017
;
23
(
3
):
697
-
706
.
116.
Baer
MR
,
Kogan
AA
,
Bentzen
SM
, et al
.
Phase I clinical trial of DNA methyltransferase inhibitor decitabine and PARP inhibitor talazoparib combination therapy in relapsed/refractory acute myeloid leukemia
.
Clin Cancer Res
.
2022
;
28
(
7
):
1313
-
1322
.
117.
Murai
J
,
Pommier
Y
.
BRCAness, homologous recombination deficiencies, and synthetic lethality
.
Cancer Res
.
2023
;
83
(
8
):
1173
-
1174
.
118.
Lappin
KM
,
Barros
EM
,
Jhujh
SS
, et al
.
Cancer-associated SF3B1 mutations confer a BRCA-like cellular phenotype and synthetic lethality to PARP inhibitors
.
Cancer Res
.
2022
;
82
(
5
):
819
-
830
.
119.
Tang
SW
,
Thomas
A
,
Murai
J
, et al
.
Overcoming resistance to DNA-targeted agents by epigenetic activation of Schlafen 11 (SLFN11) expression with class I histone deacetylase inhibitors
.
Clin Cancer Res
.
2018
;
24
(
8
):
1944
-
1953
.
120.
Sun
C
,
Yin
J
,
Fang
Y
, et al
.
BRD4 inhibition is synthetic lethal with PARP inhibitors through the induction of homologous recombination deficiency
.
Cancer Cell
.
2018
;
33
(
3
):
401
-
416.e8
.
121.
Neri
P
,
Ren
L
,
Gratton
K
, et al
.
Bortezomib-ind“ced "BRC”ness" sensitizes multiple myeloma cells to PARP inhibitors
.
Blood
.
2011
;
118
(
24
):
6368
-
6379
.
122.
Yuan
LL
,
Green
A
,
David
L
, et al
.
Targeting CHK1 inhibits cell proliferation in FLT3-ITD positive acute myeloid leukemia
.
Leuk Res
.
2014
;
38
(
11
):
1342
-
1349
.
123.
Qi
W
,
Xie
C
,
Li
C
, et al
.
CHK1 plays a critical role in the anti-leukemic activity of the wee1 inhibitor MK-1775 in acute myeloid leukemia cells
.
J Hematol Oncol
.
2014
;
7
:
53
-
64
.
124.
Di Tullio
A
,
Rouault-Pierre
K
,
Abarrategi
A
, et al
.
The combination of CHK1 inhibitor with G-CSF overrides cytarabine resistance in human acute myeloid leukemia
.
Nat Commun
.
2017
;
8
(
1
):
1679
-
1690
.
125.
Ma
J
,
Li
X
,
Su
Y
, et al
.
Mechanisms responsible for the synergistic antileukemic interactions between ATR inhibition and cytarabine in acute myeloid leukemia cells
.
Sci Rep
.
2017
;
7
:
41950
-
41963
.
126.
Fordham
SE
,
Blair
HJ
,
Elstob
CJ
, et al
.
Inhibition of ATR acutely sensitizes acute myeloid leukemia cells to nucleoside analogs that target ribonucleotide reductase
.
Blood Adv
.
2018
;
2
(
10
):
1157
-
1169
.
127.
Qi
W
,
Xu
X
,
Wang
M
, et al
.
Inhibition of Wee1 sensitizes AML cells to ATR inhibitor VE-822-induced DNA damage and apoptosis
.
Biochem Pharmacol
.
2019
;
164
:
273
-
282
.
128.
Morgado-Palacin
I
,
Day
A
,
Murga
M
, et al
.
Targeting the kinase activities of ATR and ATM exhibits antitumoral activity in mouse models of MLL-rearranged AML
.
Sci Signal
.
2016
;
9
(
445
):
91
-
107
.
129.
Lei
H
,
Jin
J
,
Liu
M
, et al
.
Chk1 inhibitors overcome imatinib resistance in chronic myeloid leukemia cells
.
Leuk Res
.
2018
;
64
:
17
-
23
.
130.
Ghelli Luserna Di Rorà
A
,
Ghetti
M
,
Ledda
L
, et al
.
Exploring the ATR-CHK1 pathway in the response of doxorubicin-induced DNA damages in acute lymphoblastic leukemia cells
.
Cell Biol Toxicol
.
2023
;
39
(
3
):
795
-
811
.
131.
Chu
SH
,
Song
EJ
,
Chabon
JR
, et al
.
Inhibition of MEK and ATR is effective in a B-cell acute lymphoblastic leukemia model driven by Mll-Af4 and activated Ras
.
Blood Adv
.
2018
;
2
(
19
):
2478
-
2490
.
132.
Le
TM
,
Poddar
S
,
Capri
JR
, et al
.
ATR inhibition facilitates targeting of leukemia dependence on convergent nucleotide biosynthetic pathways
.
Nat Commun
.
2017
;
8
(
1
):
241
-
254
.
133.
Kwok
M
,
Davies
N
,
Agathanggelou
A
, et al
.
ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells
.
Blood
.
2016
;
127
(
5
):
582
-
595
.
134.
de Jong
MRW
,
Langendonk
M
,
Reitsma
B
, et al
.
WEE1 inhibition synergizes with CHOP chemotherapy and radiation therapy through induction of premature mitotic entry and DNA damage in diffuse large B-cell lymphoma
.
Ther Adv Hematol
.
2020
;
11
:
2040620719898373
.
135.
Cottini
F
,
Hideshima
T
,
Suzuki
R
, et al
.
Synthetic lethal approaches exploiting DNA damage in aggressive myeloma
.
Cancer Discov
.
2015
;
5
(
9
):
972
-
987
.
136.
Xing
L
,
Lin
L
,
Yu
T
, et al
.
A novel BCMA PBD-ADC with ATM/ATR/WEE1 inhibitors or bortezomib induce synergistic lethality in multiple myeloma
.
Leukemia
.
2020
;
34
(
8
):
2150
-
2162
.
137.
Guo
M
,
Sun
D
,
Fan
Z
, et al
.
Targeting MK2 is a novel approach to interfere in multiple myeloma
.
Front Oncol
.
2019
;
9
:
722
-
729
.
138.
Gu
C
,
Cheng
H
,
Yang
H
, et al
.
MK2 is a therapeutic target for high-risk multiple myeloma
.
Haematologica
.
2021
;
106
(
6
):
1774
-
1777
.
139.
Dietlein
F
,
Kalb
B
,
Jokic
M
, et al
.
A synergistic interaction between Chk1- and MK2 inhibitors in KRAS-mutant cancer
.
Cell
.
2015
;
162
(
1
):
146
-
159
.
140.
Jurczak
W
,
Elmusharaf
N
,
Fox
CP
, et al
.
Phase I/II results of ceralasertib as monotherapy or in combination with acalabrutinib in high-risk relapsed/refractory chronic lymphocytic leukemia
.
Ther Adv Hematol
.
2023
;
14
:
20406207231173489
.
141.
Hu
B
,
Kittai
AS
,
Boucher
K
,
Pomicter
T
,
Stephens
DM
.
Coronado CLL: a phase Ib/II trial of combination Rp-3500 and olaparib in DNA damage repair pathway deficient relapsed/refractory chronic lymphocytic leukemia
.
Blood
.
2023
;
142
(
Suppl 1
):
3286
.
142.
Webster
JA
,
Tibes
R
,
Morris
L
, et al
.
Randomized phase II trial of cytosine arabinoside with and without the CHK1 inhibitor MK-8776 in relapsed and refractory acute myeloid leukemia
.
Leuk Res
.
2017
;
61
:
108
-
116
.
143.
Karp
JE
,
Thomas
BM
,
Greer
JM
, et al
.
Phase I and pharmacologic trial of cytosine arabinoside with the selective checkpoint 1 inhibitor Sch 900776 in refractory acute leukemias
.
Clin Cancer Res
.
2012
;
18
(
24
):
6723
-
6731
.
144.
Shafer
D
,
Kagan
AB
,
Rudek
MA
, et al
.
Phase 1 study of belinostat and adavosertib in patients with relapsed or refractory myeloid malignancies
.
Cancer Chemother Pharmacol
.
2023
;
91
(
3
):
281
-
290
.
145.
Katti
A
,
Diaz
BJ
,
Caragine
CM
,
Sanjana
NE
,
Dow
LE
.
CRISPR in cancer biology and therapy
.
Nat Rev Cancer
.
2022
;
22
(
5
):
259
-
279
.
146.
Ryan
CJ
,
Devakumar
LPS
,
Pettitt
SJ
,
Lord
CJ
.
Complex synthetic lethality in cancer
.
Nat Genet
.
2023
;
55
(
12
):
2039
-
2048
.
147.
DeWeirdt
PC
,
Sangree
AK
,
Hanna
RE
, et al
.
Genetic screens in isogenic mammalian cell lines without single cell cloning
.
Nat Commun
.
2020
;
11
(
1
):
752
-
766
.
148.
Yazinski
SA
,
Comaills
V
,
Buisson
R
, et al
.
ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells
.
Genes Dev
.
2017
;
31
(
3
):
318
-
332
.
149.
Saldivar
JC
,
Hamperl
S
,
Bocek
MJ
, et al
.
An intrinsic S/G(2) checkpoint enforced by ATR
.
Science
.
2018
;
361
(
6404
):
806
-
810
.
150.
Paczulla
AM
,
Rothfelder
K
,
Raffel
S
, et al
.
Absence of NKG2D ligands defines leukemia stem cells and mediates their immune evasion
.
Nature
.
2019
;
572
(
7768
):
254
-
259
.
151.
Ding
L
,
Kim
HJ
,
Wang
Q
, et al
.
PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian cancer
.
Cell Rep
.
2018
;
25
(
11
):
2972
-
2980.e5
.
152.
Pantelidou
C
,
Sonzogni
O
,
De Oliveria Taveira
M
, et al
.
PARP inhibitor efficacy depends on CD8(+) T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer
.
Cancer Discov
.
2019
;
9
(
6
):
722
-
737
.
153.
Chabanon
RM
,
Muirhead
G
,
Krastev
DB
, et al
.
PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer
.
J Clin Invest
.
2019
;
129
(
3
):
1211
-
1228
.
154.
Feng
X
,
Tubbs
A
,
Zhang
C
, et al
.
ATR inhibition potentiates ionizing radiation-induced interferon response via cytosolic nucleic acid-sensing pathways
.
EMBO J
.
2020
;
39
(
14
):
e104036
.
155.
Chen
J
,
Harding
SM
,
Natesan
R
, et al
.
Cell cycle checkpoints cooperate to suppress DNA- and RNA-associated molecular pattern recognition and anti-tumor immune responses
.
Cell Rep
.
2020
;
32
(
9
):
108080
.
156.
Ho
J
,
Schmidt
D
,
Lowinus
T
, et al
.
Targeting MDM2 enhances antileukemia immunity after allogeneic transplantation via MHC-II and TRAIL-R1/2 upregulation
.
Blood
.
2022
;
140
(
10
):
1167
-
1181
.
157.
Saini
SK
,
Ørskov
AD
,
Bjerregaard
AM
, et al
.
Human endogenous retroviruses form a reservoir of T cell targets in hematological cancers
.
Nat Commun
.
2020
;
11
(
1
):
5660
-
5673
.
158.
Ferlita
A
,
Nigita
G
,
Tsyba
L
, et al
.
Expression signature of human endogenous retroviruses in chronic lymphocytic leukemia
.
Proc Natl Acad Sci U S A
.
2023
;
120
(
44
):
e2307593120
.
159.
Zhou
X
,
Singh
M
,
Sanz Santos
G
, et al
.
Pharmacologic activation of p53 triggers viral mimicry response thereby abolishing tumor immune evasion and promoting antitumor immunity
.
Cancer Discov
.
2021
;
11
(
12
):
3090
-
3105
.
160.
Zhou
J
,
Kryczek
I
,
Li
S
, et al
.
The ubiquitin ligase MDM2 sustains STAT5 stability to control T cell-mediated antitumor immunity
.
Nat Immunol
.
2021
;
22
(
4
):
460
-
470
.
You do not currently have access to this content.
Sign in via your Institution