• FHD-286 reduced chromatin accessibility, repressed c-Myc and PU.1, and diminished leukemia-initiating potential in AML stem/progenitor cells.

  • FHD-286 combined with BET or menin inhibitor reduced AML burden and improved survival in xenograft models of AML with MLL1r or mtNPM1.

Abstract

BRG1 (SMARCA4) and BRM (SMARCA2) are the mutually exclusive core ATPases of the chromatin remodeling BAF (BRG1/BRM-associated factor) complexes. They enable transcription factors/cofactors to access enhancers/promoter and modulate gene expressions responsible for cell growth and differentiation of acute myeloid leukemia (AML) stem/progenitor cells. In AML with MLL1 rearrangement (MLL1r) or mutant NPM1 (mtNPM1), although menin inhibitor (MI) treatment induces clinical remissions, most patients either fail to respond or relapse, some harboring menin mutations. FHD-286 is an orally bioavailable, selective inhibitor of BRG1/BRM under clinical development in AML. Present studies show that FHD-286 induces differentiation and lethality in AML cells with MLL1r or mtNPM1, concomitantly causing perturbed chromatin accessibility and repression of c-Myc, PU.1, and CDK4/6. Cotreatment with FHD-286 and decitabine, BET inhibitor (BETi) or MI, or venetoclax synergistically induced in vitro lethality in AML cells with MLL1r or mtNPM1. In models of xenografts derived from patients with AML with MLL1r or mtNPM1, FHD-286 treatment reduced AML burden, improved survival, and attenuated AML-initiating potential of stem-progenitor cells. Compared with each drug, cotreatment with FHD-286 and BETi, MI, decitabine, or venetoclax significantly reduced AML burden and improved survival, without inducing significant toxicity. These findings highlight the FHD-286–based combinations as a promising therapy for AML with MLL1r or mtNPM1.

1.
Mashtalir
N
,
D'Avino
AR
,
Michel
BC
, et al
.
Modular organization and assembly of SWI/SNF family chromatin remodeling complexes
.
Cell
.
2018
;
175
(
5
):
1272
-
1288.e20
.
2.
Centore
RC
,
Sandoval
GJ
,
Soares
LMM
,
Kadoch
C
,
Chan
HM
.
Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies
.
Trends Genet
.
2020
;
36
(
12
):
936
-
950
.
3.
Otto
JE
,
Ursu
O
,
Wu
AP
, et al
.
Structural and functional properties of mSWI/SNF chromatin remodeling complexes revealed through single-cell perturbation screens
.
Mol Cell
.
2023
;
83
(
8
):
1350
-
1367.e7
.
4.
Pulice
JL
,
Kadoch
C
.
Composition and function of mammalian SWI/SNF chromatin remodeling complexes in human disease
.
Cold Spring Harb Symp Quant Biol
.
2016
;
81
:
53
-
60
.
5.
Wu
J
,
Krchma
K
,
Lee
HJ
, et al
.
Requisite chromatin remodeling for myeloid and erythroid lineage differentiation from erythromyeloid progenitors
.
Cell Rep
.
2020
;
33
(
7
):
108395
.
6.
Buscarlet
M
,
Krasteva
V
,
Ho
L
, et al
.
Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance
.
Blood
.
2014
;
123
(
11
):
1720
-
1728
.
7.
Rago
F
,
Rodrigues
LU
,
Bonney
M
, et al
.
Exquisite sensitivity to dual BRG1/BRM ATPase inhibitors reveals broad SWI/SNF dependencies in acute myeloid leukemia
.
Mol Cancer Res
.
2022
;
20
(
3
):
361
-
372
.
8.
Hoffman
GR
,
Rahal
R
,
Buxton
F
, et al
.
Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
8
):
3128
-
3133
.
9.
Papillon
JPN
,
Nakajima
K
,
Adair
CD
, et al
.
Discovery of orally active inhibitors of Brahma Homolog (BRM)/SMARCA2 ATPase activity for the treatment of Brahma Related Gene 1 (BRG1)/SMARCA4-mutant cancers
.
J Med Chem
.
2018
;
61
(
22
):
10155
-
10172
.
10.
de Miguel
FJ
,
Gentile
C
,
Feng
WW
, et al
.
Mammalian SWI/SNF chromatin remodeling complexes promote tyrosine kinase inhibitor resistance in EGFR-mutant lung cancer
.
Cancer Cell
.
2023
;
41
(
8
):
1516
-
1534.e9
.
11.
Ley
TJ
,
Miller
C
, et al;
Cancer Genome Atlas Research Network
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med
.
2013
;
368
(
22
):
2059
-
2074
.
12.
Kandoth
C
,
McLellan
MD
,
Vandin
F
, et al
.
Mutational landscape and significance across 12 major cancer types
.
Nature
.
2013
;
502
(
7471
):
333
-
339
.
13.
Cruickshank
VA
,
Sroczynska
P
,
Sankar
A
, et al
.
SWI/SNF subunits SMARCA4, SMARCD2 and DPF2 collaborate in MLL-rearranged leukaemia maintenance
.
pLoS One
.
2015
;
10
(
11
):
e0142806
.
14.
Fiskus
W
,
Boettcher
S
,
Daver
N
, et al
.
Effective menin inhibitor-based combinations against AML with MLL rearrangement or NPM1 mutation (NPM1c)
.
Blood Cancer J
.
2022
;
12
(
1
):
5
.
15.
Fiskus
W
,
Mill
CP
,
Birdwell
C
, et al
.
Targeting of epigenetic co-dependencies enhances anti-AML efficacy of menin inhibitor in AML with MLL1-r or mutant NPM1
.
Blood Cancer J
.
2023
;
13
(
1
):
53
.
16.
Saint-André
V
,
Federation
AJ
,
Lin
CY
, et al
.
Models of human core transcriptional regulatory circuitries
.
Genome Res
.
2016
;
26
(
3
):
385
-
396
.
17.
Chambers
C
,
Cermakova
K
,
Chan
YS
, et al
.
SWI/SNF blockade disrupts PU.1-directed enhancer programs in normal hematopoietic cells and acute myeloid leukemia
.
Cancer Res
.
2023
;
83
(
7
):
983
-
996
.
18.
Fiskus
W
,
Daver
N
,
Boettcher
S
, et al
.
Activity of menin inhibitor ziftomenib (KO-539) as monotherapy or in combinations against AML cells with MLL1 rearrangement or mutant NPM1
.
Leukemia
.
2022
;
36
(
11
):
2729
-
2733
.
19.
Luskin
MR
,
Murakami
MA
,
Manalis
SR
,
Weinstock
DM
.
Targeting minimal residual disease: a path to cure?
.
Nat Rev Cancer
.
2018
;
18
(
4
):
255
-
263
.
20.
Thomas
D
,
Majeti
R
.
Biology and relevance of human acute myeloid leukemia stem cells
.
Blood
.
2017
;
129
(
12
):
1577
-
1585
.
21.
DiNardo
CD
,
Pratz
K
,
Pullarkat
V
, et al
.
Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia
.
Blood
.
2019
;
133
(
1
):
7
-
17
.
22.
Berthon
C
,
Raffoux
E
,
Thomas
X
, et al
.
Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study
.
Lancet Haematol
.
2016
;
3
(
4
):
e186
-
e195
.
23.
Swaminathan
M
,
Bourgeois
W
,
Armstrong
SA
,
Wang
ES
.
Menin inhibitors in acute myeloid leukemia-what does the future hold?
.
Cancer J
.
2022
;
28
(
1
):
62
-
66
.
24.
Issa
GC
,
Aldoss
I
,
DiPersio
J
, et al
.
The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia
.
Nature
.
2023
;
615
(
7954
):
920
-
924
.
25.
Tsherniak
A
,
Vazquez
F
,
Montgomery
PG
, et al
.
Defining a cancer dependency map
.
Cell
.
2017
;
170
(
3
):
564
-
576.e16
.
26.
Prokocimer
M
,
Molchadsky
A
,
Rotter
V
.
Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy
.
Blood
.
2017
;
130
(
6
):
699
-
712
.
27.
Short
NJ
,
Montalban-Bravo
G
,
Hwang
H
, et al
.
Prognostic and therapeutic impacts of mutant TP53 variant allelic frequency in newly diagnosed acute myeloid leukemia
.
Blood Adv
.
2020
;
4
(
22
):
5681
-
5689
.
28.
Yan
B
,
Claxton
D
,
Huang
S
,
Qiu
Y
.
AML chemoresistance: the role of mutant TP53 subclonal expansion and therapy strategy
.
Exp Hematol
.
2020
;
87
:
13
-
19
.
29.
Boettcher
S
,
Miller
PG
,
Sharma
R
, et al
.
A dominant negative effect drives selection of TP53 missense mutations in myeloid malignancies
.
Science
.
2019
;
365
(
6453
):
599
-
604
.
30.
Perner
F
,
Stein
EM
,
Wenge
DV
, et al
.
MEN1 mutations mediate clinical resistance to menin inhibition
.
Nature
.
2023
;
615
(
7954
):
913
-
919
.
31.
Cabanos
HF
,
Hata
AN
.
Emerging insights into targeted therapy-tolerant persister cells in cancer
.
Cancers (Basel)
.
2021
;
13
(
11
):
2666
.
32.
Lu
J
,
Qian
Y
,
Altieri
M
, et al
.
Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4
.
Chem Biol
.
2015
;
22
(
6
):
755
-
763
.
33.
Oike
T
,
Ogiwara
H
,
Tominaga
Y
, et al
.
A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1
.
Cancer Res
.
2013
;
73
(
17
):
5508
-
5518
.
34.
St Pierre
R
,
Kadoch
C
.
Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities
.
Curr Opin Genet Dev
.
2017
;
42
:
56
-
67
.
35.
Xiao
L
,
Parolia
A
,
Qiao
Y
, et al
.
Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer
.
Nature
.
2022
;
601
(
7893
):
434
-
439
.
36.
Saenz
DT
,
Fiskus
W
,
Mill
CP
, et al
.
Mechanistic basis and efficacy of targeting the β-catenin-TCF7L2-JMJD6-c-Myc axis to overcome resistance to BET inhibitors
.
Blood
.
2020
;
135
(
15
):
1255
-
1269
.
37.
Boumahdi
S
,
de Sauvage
FJ
.
The great escape: tumour cell plasticity in resistance to targeted therapy
.
Nat Rev Drug Discov
.
2020
;
19
(
1
):
39
-
56
.
38.
Shen
S
,
Vagner
S
,
Robert
C
.
Persistent cancer cells: the deadly survivors
.
Cell
.
2020
;
183
(
4
):
860
-
874
.
You do not currently have access to this content.
Sign in via your Institution