• Clonal evolution on venetoclax selects for 8p deletion, which leads to increased venetoclax resistance in vitro.

  • Elevated Erk signaling and constitutively high BCR signaling are associated with venetoclax progression.

Although BCL2 mutations are reported as later occurring events leading to venetoclax resistance, many other mechanisms of progression have been reported though remain poorly understood. Here, we analyze longitudinal tumor samples from 11 patients with disease progression while receiving venetoclax to characterize the clonal evolution of resistance. All patients tested showed increased in vitro resistance to venetoclax at the posttreatment time point. We found the previously described acquired BCL2-G101V mutation in only 4 of 11 patients, with 2 patients showing a very low variant allele fraction (0.03%-4.68%). Whole-exome sequencing revealed acquired loss(8p) in 4 of 11 patients, of which 2 patients also had gain (1q21.2-21.3) in the same cells affecting the MCL1 gene. In vitro experiments showed that CLL cells from the 4 patients with loss(8p) were more resistant to venetoclax than cells from those without it, with the cells from 2 patients also carrying gain (1q21.2-21.3) showing increased sensitivity to MCL1 inhibition. Progression samples with gain (1q21.2-21.3) were more susceptible to the combination of MCL1 inhibitor and venetoclax. Differential gene expression analysis comparing bulk RNA sequencing data from pretreatment and progression time points of all patients showed upregulation of proliferation, B-cell receptor (BCR), and NF-κB gene sets including MAPK genes. Cells from progression time points demonstrated upregulation of surface immunoglobulin M and higher pERK levels compared with those from the preprogression time point, suggesting an upregulation of BCR signaling that activates the MAPK pathway. Overall, our data suggest several mechanisms of acquired resistance to venetoclax in CLL that could pave the way for rationally designed combination treatments for patients with venetoclax-resistant CLL.

1.
Skanland
SS
,
Mato
AR
.
Overcoming resistance to targeted therapies in chronic lymphocytic leukemia
.
Blood Adv
.
2021
;
5
(
1
):
334
-
343
.
2.
Souers
AJ
,
Leverson
JD
,
Boghaert
ER
, et al
.
ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets
.
Nat Med
.
2013
;
19
(
2
):
202
-
208
.
3.
Kipps
TJ
,
Stevenson
FK
,
Wu
CJ
, et al
.
Chronic lymphocytic leukaemia
.
Nat Rev Dis Primers
.
2017
;
3
:
16096
.
4.
Roberts
AW
,
Ma
S
,
Kipps
TJ
, et al
.
Efficacy of venetoclax in relapsed chronic lymphocytic leukemia is influenced by disease and response variables
.
Blood
.
2019
;
134
(
2
):
111
-
122
.
5.
Blombery
P
,
Anderson
MA
,
Gong
JN
, et al
.
Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia
.
Cancer Discov
.
2019
;
9
(
3
):
342
-
353
.
6.
Lucas
F
,
Larkin
K
,
Gregory
CT
, et al
.
Novel BCL2 mutations in venetoclax-resistant, ibrutinib-resistant CLL patients with BTK/PLCG2 mutations
.
Blood
.
2020
;
135
(
24
):
2192
-
2195
.
7.
Blombery
P
,
Thompson
ER
,
Nguyen
T
, et al
.
Multiple BCL2 mutations cooccurring with Gly101Val emerge in chronic lymphocytic leukemia progression on venetoclax
.
Blood
.
2020
;
135
(
10
):
773
-
777
.
8.
Sedlarikova
L
,
Petrackova
A
,
Papajik
T
,
Turcsanyi
P
,
Kriegova
E
.
Resistance-associated mutations in chronic lymphocytic leukemia patients treated with novel agents
.
Front Oncol
.
2020
;
10
:
894
.
9.
Herling
CD
,
Abedpour
N
,
Weiss
J
, et al
.
Clonal dynamics towards the development of venetoclax resistance in chronic lymphocytic leukemia
.
Nat Commun
.
2018
;
9
(
1
):
727
.
10.
Thijssen
R
,
Tian
L
,
Anderson
MA
, et al
.
Single-cell multiomics reveal the scale of multilayered adaptations enabling CLL relapse during venetoclax therapy
.
Blood
.
2022
;
140
(
20
):
2127
-
2141
.
11.
Thomalla
D
,
Beckmann
L
,
Grimm
C
, et al
.
Deregulation and epigenetic modification of BCL2-family genes cause resistance to venetoclax in hematologic malignancies
.
Blood
.
2022
;
140
(
20
):
2113
-
2126
.
12.
Guieze
R
,
Liu
VM
,
Rosebrock
D
, et al
.
Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies
.
Cancer Cell
.
2019
;
36
(
4
):
369
-
384.e13
.
13.
Konopleva
M
,
Pollyea
DA
,
Potluri
J
, et al
.
Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia
.
Cancer Discov
.
2016
;
6
(
10
):
1106
-
1117
.
14.
Landau
DA
,
Tausch
E
,
Taylor-Weiner
AN
, et al
.
Mutations driving CLL and their evolution in progression and relapse
.
Nature
.
2015
;
526
(
7574
):
525
-
530
.
15.
Cibulskis
K
,
Lawrence
MS
,
Carter
SL
, et al
.
Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples
.
Nat Biotechnol
.
2013
;
31
(
3
):
213
-
219
.
16.
Lawrence
MS
,
Stojanov
P
,
Mermel
CH
, et al
.
Discovery and saturation analysis of cancer genes across 21 tumour types
.
Nature
.
2014
;
505
(
7484
):
495
-
501
.
17.
Robinson
JT
,
Thorvaldsdottir
H
,
Winckler
W
, et al
.
Integrative genomics viewer
.
Nat Biotechnol
.
2011
;
29
(
1
):
24
-
26
.
18.
Stachler
MD
,
Taylor-Weiner
A
,
Peng
S
, et al
.
Paired exome analysis of Barrett's esophagus and adenocarcinoma
.
Nat Genet
.
2015
;
47
(
9
):
1047
-
1055
.
19.
Carter
SL
,
Cibulskis
K
,
Helman
E
, et al
.
Absolute quantification of somatic DNA alterations in human cancer
.
Nat Biotechnol
.
2012
;
30
(
5
):
413
-
421
.
20.
Burger
JA
,
Landau
DA
,
Taylor-Weiner
A
, et al
.
Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition
.
Nat Commun
.
2016
;
7
:
11589
.
21.
Mermel
CH
,
Schumacher
SE
,
Hill
B
,
Meyerson
ML
,
Beroukhim
R
,
Getz
G
.
GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers
.
Genome Biol
.
2011
;
12
(
4
):
R41
.
22.
Leshchiner
I
,
Livitz
D
,
Gainor
JF
, et al
.
Comprehensive analysis of tumour initiation, spatial and temporal progression under multiple lines of treatment
.
bioRxiv
.
Preprint posted online 16 February 2019
.
23.
Utro
F
,
Levovitz
C
,
Rhrissorrakrai
K
,
Parida
L
.
A common methodological phylogenomics framework for intra-patient heteroplasmies to infer SARS-CoV-2 sublineages and tumor clones
.
BMC Genomics
.
2021
;
22
(
suppl 5
):
518
.
24.
Popovic
R
,
Dunbar
F
,
Lu
C
, et al
.
Identification of recurrent genomic alterations in the apoptotic machinery in chronic lymphocytic leukemia patients treated with venetoclax monotherapy
.
Am J Hematol
.
2022
;
97
(
2
):
E47
-
e51
.
25.
Kadri
S
,
Lee
J
,
Fitzpatrick
C
, et al
.
Clonal evolution underlying leukemia progression and Richter transformation in patients with ibrutinib-relapsed CLL
.
Blood Adv
.
2017
;
1
(
12
):
715
-
727
.
26.
Li
H
,
Zhang
M
,
Linghu
E
, et al
.
Epigenetic silencing of TMEM176A activates ERK signaling in human hepatocellular carcinoma
.
Clin Epigenetics
.
2018
;
10
(
1
):
137
.
27.
Liu
W
,
Yi
JM
,
Liu
Y
, et al
.
CDK6 is a potential prognostic biomarker in acute myeloid leukemia
.
Front Genet
.
2020
;
11
:
600227
.
28.
Hasan
MK
,
Rassenti
LZ
,
Widhopf II
GF
,
Shen
Z
,
Briggs
SP
,
Kipps
TJ
.
Wnt5a induces ROR1 to interact Grb2 to enhance Ras activation in chronic lymphocytic leukemia [abstract]
.
Blood
.
2021
;
138
(
suppl 1
). Abstract 247.
29.
Ghia
EM
,
Rassenti
LZ
,
Choi
MY
, et al
.
High expression level of ROR1 and ROR1-signaling associates with venetoclax resistance in chronic lymphocytic leukemia
.
Leukemia
.
2022
;
36
(
6
):
1609
-
1618
.
30.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
43
):
15545
-
15550
.
31.
Mootha
VK
,
Lindgren
CM
,
Eriksson
KF
, et al
.
PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
.
Nat Genet
.
2003
;
34
(
3
):
267
-
273
.
32.
Tsai
W-B
,
Aiba
I
,
Long
Y
, et al
.
Activation of Ras/PI3K/ERK pathway induces c-Myc stabilization to upregulate argininosuccinate synthetase, leading to arginine deiminase resistance in melanoma cells
.
Cancer Res
.
2012
;
72
(
10
):
2622
-
2633
.
33.
Edelmann
J
,
Holzmann
K
,
Tausch
E
, et al
.
Genomic alterations in high-risk chronic lymphocytic leukemia frequently affect cell cycle key regulators and NOTCH1-regulated transcription
.
Haematologica
.
2020
;
105
(
5
):
1379
-
1390
.
34.
Chang
B
,
Liu
G
,
Yang
G
,
Mercado-Uribe
I
,
Huang
M
,
Liu
J
.
REDD1 is required for RAS-mediated transformation of human ovarian epithelial cells
.
Cell Cycle
.
2009
;
8
(
5
):
780
-
786
.
35.
Brown
JR
,
Hanna
M
,
Tesar
B
, et al
.
Integrative genomic analysis implicates gain of PIK3CA at 3q26 and MYC at 8q24 in chronic lymphocytic leukemia
.
Clin Cancer Res
.
2012
;
18
(
14
):
3791
-
3802
.
36.
Lebok
P
,
Mittenzwei
A
,
Kluth
M
, et al
.
8p deletion is strongly linked to poor prognosis in breast cancer
.
Cancer Biol Ther
.
2015
;
16
(
7
):
1080
-
1087
.
37.
Chakraborty
C
,
Xu
Y
,
Yao
Y
, et al
.
Activation of the ERK pathway drives acquired resistance to venetoclax in MM cell models [abstract]
.
Blood
.
2020
;
136
(
suppl 1
):
21
-
22
.
38.
Zhang
Q
,
Riley-Gillis
B
,
Han
L
, et al
.
Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia
.
Signal Transduct Target Ther
.
2022
;
7
(
1
):
51
.
39.
Bodo
J
,
Zhao
X
,
Durkin
L
, et al
.
Acquired resistance to venetoclax (ABT-199) in t(14;18) positive lymphoma cells
.
Oncotarget
.
2016
;
7
(
43
):
70000
-
70010
.
40.
Bojarczuk
K
,
Sasi
BK
,
Gobessi
S
, et al
.
BCR signaling inhibitors differ in their ability to overcome Mcl-1-mediated resistance of CLL B cells to ABT-199
.
Blood
.
2016
;
127
(
25
):
3192
-
3201
.
You do not currently have access to this content.
Sign in via your Institution