• STAT5 is sufficient for IL-7 signaling in ETP-ALL. STAT5 supports growth, self-renewal, and chemoresistance of LSCs.

  • Pimozide enhances eradication of LSCs by chemotherapy.

Interleukin-7 (IL-7) supports the growth and chemoresistance of T-cell acute lymphoblastic leukemia (T-ALL), particularly the early T-cell precursor subtype (ETP-ALL), which frequently has activating mutations of IL-7 signaling. Signal transducer and activator of transcription (STAT5) is an attractive therapeutic target because it is almost universally activated in ETP-ALL, even in the absence of mutations of upstream activators such as the IL-7 receptor (IL-7R), Janus kinase, and Fms-like tyrosine kinase 3 (FLT3). To examine the role of activated STAT5 in ETP-ALL, we have used a Lmo2-transgenic (Lmo2Tg) mouse model in which we can monitor chemoresistant preleukemia stem cells (pre-LSCs) and leukemia stem cells (LSCs) that drive T-ALL development and relapse following chemotherapy. Using IL-7R-deficient Lmo2Tg mice, we show that IL-7 signaling was not required for the formation of pre-LSCs but essential for their expansion and clonal evolution into LSCs to generate T-ALL. Activated STAT5B was sufficient for the development of T-ALL in IL-7R-deficient Lmo2Tg mice, indicating that inhibition of STAT5 is required to block the supportive signals provided by IL-7. To further understand the role of activated STAT5 in LSCs of ETP-ALL, we developed a new transgenic mouse that enables T-cell specific and doxycycline-inducible expression of the constitutively activated STAT5B1∗6 mutant. Expression of STAT5B1∗6 in T cells had no effect alone but promoted expansion and chemoresistance of LSCs in Lmo2Tg mice. Pharmacologic inhibition of STAT5 with pimozide-induced differentiation and loss of LSCs, while enhancing response to chemotherapy. Furthermore, pimozide significantly reduced leukemia burden in vivo and overcame chemoresistance of patient-derived ETP-ALL xenografts. Overall, our results demonstrate that STAT5 is an attractive therapeutic target for eradicating LSCs in ETP-ALL.

1.
Marks
DI
,
Rowntree
C
.
Management of adults with T-cell lymphoblastic leukemia
.
Blood
.
2017
;
129
(
9
):
1134
-
1142
.
2.
Waanders
E
,
Gu
Z
,
Dobson
SM
, et al
.
Mutational landscape and patterns of clonal evolution in relapsed pediatric acute lymphoblastic leukemia
.
Blood Cancer Discov
.
2020
;
1
(
1
):
96
-
111
.
3.
Silverman
LB
.
Balancing cure and long-term risks in acute lymphoblastic leukemia
.
Hematology Am Soc Hematol Educ Program
.
2014
;
2014
(
1
):
190
-
197
.
4.
Coustan-Smith
E
,
Mullighan
CG
,
Onciu
M
, et al
.
Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia
.
Lancet Oncol
.
2009
;
10
(
2
):
147
-
156
.
5.
Liu
Y
,
Easton
J
,
Shao
Y
, et al
.
The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia
.
Nat Genet
.
2017
;
49
(
8
):
1211
-
1218
.
6.
Zhang
J
,
Ding
L
,
Holmfeldt
L
, et al
.
The genetic basis of early T-cell precursor acute lymphoblastic leukaemia
.
Nature
.
2012
;
481
(
7380
):
157
-
163
.
7.
Wingelhofer
B
,
Neubauer
HA
,
Valent
P
, et al
.
Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer
.
Leukemia
.
2018
;
32
(
8
):
1713
-
1726
.
8.
Igelmann
S
,
Neubauer
HA
,
Ferbeyre
G
.
STAT3 and STAT5 activation in solid cancers
.
Cancers (Basel)
.
2019
;
11
(
10
):
1428
.
9.
Kucuk
C
,
Jiang
B
,
Hu
X
, et al
.
Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells
.
Nat Commun
.
2015
;
6
:
6025
.
10.
Bandapalli
OR
,
Schuessele
S
,
Kunz
JB
, et al
.
The activating STAT5B N642H mutation is a common abnormality in pediatric T-cell acute lymphoblastic leukemia and confers a higher risk of relapse
.
Haematologica
.
2014
;
99
(
10
):
e188
-
192
.
11.
Johnson
SE
,
Shah
N
,
Bajer
AA
,
LeBien
TW
.
IL-7 activates the phosphatidylinositol 3-kinase/AKT pathway in normal human thymocytes but not normal human B cell precursors
.
J Immunol
.
2008
;
180
(
12
):
8109
-
8117
.
12.
Barata
JT
,
Silva
A
,
Brandao
JG
,
Nadler
LM
,
Cardoso
AA
,
Boussiotis
VA
.
Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells
.
J Exp Med
.
2004
;
200
(
5
):
659
-
669
.
13.
Silva
AP
,
Almeida
ARM
,
Cachucho
A
, et al
.
Overexpression of wild type IL-7Ralpha promotes T-cell acute lymphoblastic leukemia/lymphoma
.
Blood
.
2021
;
138
(
12
):
1040
-
1052
.
14.
Ribeiro
D
,
Melao
A
,
van Boxtel
R
, et al
.
STAT5 is essential for IL-7-mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells
.
Blood Adv
.
2018
;
2
(
17
):
2199
-
2213
.
15.
Ribeiro
D
,
Melao
A
,
Barata
JT
.
IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia
.
Adv Biol Regul
.
2013
;
53
(
2
):
211
-
222
.
16.
Tremblay
CS
,
Brown
FC
,
Collett
M
, et al
.
Loss-of-function mutations of Dynamin 2 promote T-ALL by enhancing IL-7 signalling
.
Leukemia
.
2016
;
30
(
10
):
1993
-
2001
.
17.
Bailey
E
,
Li
L
,
Duffield
AS
,
Ma
HS
,
Huso
DL
,
Small
D
.
FLT3/D835Y mutation knock-in mice display less aggressive disease compared with FLT3/internal tandem duplication (ITD) mice
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
52
):
21113
-
21118
.
18.
Choudhary
C
,
Brandts
C
,
Schwable
J
, et al
.
Activation mechanisms of STAT5 by oncogenic Flt3-ITD
.
Blood
.
2007
;
110
(
1
):
370
-
374
.
19.
Kato
Y
,
Iwama
A
,
Tadokoro
Y
, et al
.
Selective activation of STAT5 unveils its role in stem cell self-renewal in normal and leukemic hematopoiesis
.
J Exp Med
.
2005
;
202
(
1
):
169
-
179
.
20.
Haetscher
N
,
Feuermann
Y
,
Wingert
S
, et al
.
STAT5-regulated microRNA-193b controls haematopoietic stem and progenitor cell expansion by modulating cytokine receptor signalling
.
Nat Commun
.
2015
;
6
:
8928
.
21.
Fatrai
S
,
Wierenga
ATJ
,
Daenen
SMGJ
,
Vellenga
E
,
Schuringa
JJ
.
Identification of HIF2alpha as an important STAT5 target gene in human hematopoietic stem cells
.
Blood
.
2011
;
117
(
12
):
3320
-
3330
.
22.
Kollmann
S
,
Grundschober
E
,
Maurer
B
, et al
.
Twins with different personalities: STAT5B-but not STAT5A-has a key role in BCR/ABL-induced leukemia
.
Leukemia
.
2019
;
33
(
7
):
1583
-
1597
.
23.
Harir
N
,
Pecquet
C
,
Kerenyi
M
, et al
.
Constitutive activation of Stat5 promotes its cytoplasmic localization and association with PI3-kinase in myeloid leukemias
.
Blood
.
2007
;
109
(
4
):
1678
-
1686
.
24.
Schepers
H
,
Wierenga
ATJ
,
Vellenga
E
,
Schuringa
JJ
.
STAT5-mediated self-renewal of normal hematopoietic and leukemic stem cells
.
JAKSTAT
.
2012
;
1
(
1
):
13
-
22
.
25.
Bunting
KD
,
Bradley
HL
,
Hawley
TS
,
Moriggl
R
,
Sorrentino
BP
,
Ihle
JN
.
Reduced lymphomyeloid repopulating activity from adult bone marrow and fetal liver of mice lacking expression of STAT5
.
Blood
.
2002
;
99
(
2
):
479
-
487
.
26.
Wang
Z
,
Li
G
,
Tse
W
,
Bunting
KD
.
Conditional deletion of STAT5 in adult mouse hematopoietic stem cells causes loss of quiescence and permits efficient nonablative stem cell replacement
.
Blood
.
2009
;
113
(
20
):
4856
-
4865
.
27.
Maude
SL
,
Dolai
S
,
Delgado-Martin
C
, et al
.
Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia
.
Blood
.
2015
;
125
(
11
):
1759
-
1767
.
28.
Delgado-Martin
C
,
Meyer
LK
,
Huang
BJ
, et al
.
JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias
.
Leukemia
.
2017
;
31
(
12
):
2568
-
2576
.
29.
Kontro
M
,
Kuusanmaki
H
,
Eldfors
S
, et al
.
Novel activating STAT5B mutations as putative drivers of T-cell acute lymphoblastic leukemia
.
Leukemia
.
2014
;
28
(
8
):
1738
-
1742
.
30.
Abdelrahman
RA
,
Begna
KH
,
Al-Kali
A
,
Hogan
WJ
,
Litzow
MR
,
Tefferi
A
.
Revised assessment of response and long-term discontinuation rates among 111 patients with myelofibrosis treated with momelotinib or ruxolitinib
.
Leukemia
.
2015
;
29
(
2
):
498
-
500
.
31.
Tefferi
A
,
Litzow
MR
,
Pardanani
A
.
Long-term outcome of treatment with ruxolitinib in myelofibrosis
.
N Engl J Med
.
2011
;
365
(
15
):
1455
-
1457
.
32.
Larson
RC
,
Fisch
P
,
Larson
TA
, et al
.
T cell tumours of disparate phenotype in mice transgenic for Rbtn-2
.
Oncogene
.
1994
;
9
(
12
):
3675
-
3681
.
33.
McCormack
MP
,
Young
LF
,
Vasudevan
S
, et al
.
The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal
.
Science
.
2010
;
327
(
5967
):
879
-
883
.
34.
Abdulla
H
,
Vo
A
,
Shields
BJ
, et al
.
T-ALL can evolve to oncogene independence
.
Leukemia
.
2021
;
35
(
8
):
2205
-
2219
.
35.
Tremblay
CS
,
Chiu
SK
,
Saw
J
, et al
.
Small molecule inhibition of dynamin-dependent endocytosis targets multiple niche signals and impairs leukemia stem cells
.
Nat Commun
.
2020
;
11
(
1
):
6211
.
36.
Tremblay
CS
,
Saw
J
,
Chiu
SK
, et al
.
Restricted cell cycle is essential for clonal evolution and therapeutic resistance of pre-leukemic stem cells
.
Nat Commun
.
2018
;
9
(
1
):
3535
.
37.
Haenebalcke
L
,
Goossens
S
,
Naessens
M
, et al
.
Efficient ROSA26-based conditional and/or inducible transgenesis using RMCE-compatible F1 hybrid mouse embryonic stem cells
.
Stem Cell Rev Rep
.
2013
;
9
(
6
):
774
-
785
.
38.
Onishi
M
,
Nosaka
T
,
Misawa
K
, et al
.
Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation
.
Mol Cell Biol
.
1998
;
18
(
7
):
3871
-
3879
.
39.
Peschon
JJ
,
Morrissey
PJ
,
Grabstein
KH
, et al
.
Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice
.
J Exp Med
.
1994
;
180
(
5
):
1955
-
1960
.
40.
de Boer
J
,
Williams
A
,
Skavdis
G
, et al
.
Transgenic mice with hematopoietic and lymphoid specific expression of Cre
.
Eur J Immunol
.
2003
;
33
(
2
):
314
-
325
.
41.
Srinivas
S
,
Watanabe
T
,
Lin
CS
, et al
.
Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus
.
BMC Dev Biol
.
2001
;
1
:
4
.
42.
Tremblay
M
,
Tremblay
CS
,
Herblot
S
, et al
.
Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes
.
Genes Dev
.
2010
;
24
(
11
):
1093
-
1105
.
43.
Szymanska
B
,
Wilczynska-Kalak
U
,
Kang
MH
, et al
.
Pharmacokinetic modeling of an induction regimen for in vivo combined testing of novel drugs against pediatric acute lymphoblastic leukemia xenografts
.
PLoS One
.
2012
;
7
(
3
):
e33894
.
44.
Nelson
EA
,
Walker
SR
,
Xiang
M
, et al
.
The STAT5 inhibitor pimozide displays efficacy in models of acute myelogenous leukemia driven by FLT3 mutations
.
Genes Cancer
.
2012
;
3
(
7-8
):
503
-
511
.
45.
Moriggl
R
,
Sexl
V
,
Kenner
L
, et al
.
Stat5 tetramer formation is associated with leukemogenesis
.
Cancer Cell
.
2005
;
7
(
1
):
87
-
99
.
46.
Klammt
J
,
Neumann
D
,
Gevers
EF
, et al
.
Dominant-negative STAT5B mutations cause growth hormone insensitivity with short stature and mild immune dysregulation
.
Nat Commun
.
2018
;
9
(
1
):
2105
.
47.
Brachet-Botineau
M
,
Polomski
M
,
Neubauer
HA
, et al
.
Pharmacological inhibition of oncogenic STAT3 and STAT5 signaling in hematopoietic cancers
.
Cancers (Basel)
.
2020
;
12
(
1
):
240
.
48.
Nelson
EA
,
Walker
SR
,
Weisberg
E
, et al
.
The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors
.
Blood
.
2011
;
117
(
12
):
3421
-
3429
.
49.
Bar-Natan
M
,
Nelson
EA
,
Walker
SR
,
Kuang
Y
,
Distel
RJ
,
Frank
DA
.
Dual inhibition of Jak2 and STAT5 enhances killing of myeloproliferative neoplasia cells
.
Leukemia
.
2012
;
26
(
6
):
1407
-
1410
.
50.
Schafranek
L
,
Nievergall
E
,
Powell
JA
, et al
.
Sustained inhibition of STAT5, but not JAK2, is essential for TKI-induced cell death in chronic myeloid leukemia
.
Leukemia
.
2015
;
29
(
1
):
76
-
85
.
51.
Subramaniam
D
,
Angulo
P
,
Ponnurangam
S
, et al
.
Suppressing STAT5 signaling affects osteosarcoma growth and stemness
.
Cell Death Dis
.
2020
;
11
(
2
):
149
.
52.
Wingelhofer
B
,
Maurer
B
,
Heyes
EC
, et al
.
Pharmacologic inhibition of STAT5 in acute myeloid leukemia
.
Leukemia
.
2018
;
32
(
5
):
1135
-
1146
.
53.
Armstrong
F
,
Brunet de la Grange
P
,
Gerby
B
, et al
.
NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity
.
Blood
.
2009
;
113
(
8
):
1730
-
1740
.
54.
Deftos
ML
,
He
YW
,
Ojala
EW
,
Bevan
MJ
.
Correlating notch signaling with thymocyte maturation
.
Immunity
.
1998
;
9
(
6
):
777
-
786
.
55.
Govaerts
I
,
Jacobs
K
,
Vandepoel
R
,
Cools
J
.
JAK/STAT pathway mutations in T-ALL, including the STAT5B N642H mutation, are sensitive to JAK1/JAK3 inhibitors
.
Hemasphere
.
2019
;
3
(
6
):
e313
.
56.
Gerby
B
,
Tremblay
CS
,
Tremblay
M
, et al
.
SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells
.
PLoS Genet
.
2014
;
10
(
12
):
e1004768
.
57.
Rokita
JL
,
Rathi
KS
,
Cardenas
MF
, et al
.
Genomic profiling of childhood tumor patient-derived xenograft models to enable rational clinical trial design
.
Cell Rep
.
2019
;
29
(
6
):
1675
-
1689.e9
.
58.
Perry
JM
,
Tao
F
,
Roy
A
, et al
.
Overcoming Wnt-beta-catenin dependent anticancer therapy resistance in leukaemia stem cells
.
Nat Cell Biol
.
2020
;
22
(
6
):
689
-
700
.
59.
Riddell
J
,
Gazit
R
,
Garrison
BS
, et al
.
Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors
.
Cell
.
2014
;
157
(
3
):
549
-
564
.
60.
van der Zwet
JCG
,
Buijs-Gladdines
JGCAM
,
Cordo
V
, et al
.
MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance
.
Leukemia
.
2021
;
35
(
12
):
3394
-
3405
.
61.
Maurer
B
,
Nivarthi
H
,
Wingelhofer
B
, et al
.
High activation of STAT5A drives peripheral T-cell lymphoma and leukemia
.
Haematologica
.
2020
;
105
(
2
):
435
-
447
.
62.
de Araujo
ED
,
Erdogan
F
,
Neubauer
HA
, et al
.
Structural and functional consequences of the STAT5B(N642H) driver mutation
.
Nat Commun
.
2019
;
10
(
1
):
2517
.
63.
Pham
HTT
,
Maurer
B
,
Prchal-Murphy
M
, et al
.
STAT5BN642H is a driver mutation for T cell neoplasia
.
J Clin Invest
.
2018
;
128
(
1
):
387
-
401
.
64.
Vanden Bempt
M
,
Demeyer
S
,
Broux
M
, et al
.
Cooperative enhancer activation by TLX1 and STAT5 drives development of NUP214-ABL1/TLX1-positive T cell acute lymphoblastic leukemia
.
Cancer Cell
.
2018
;
34
(
2
):
271
-
285.e7
.
65.
de Bock
CE
,
Demeyer
S
,
Degryse
S
, et al
.
HOXA9 cooperates with activated JAK/STAT signaling to drive leukemia development
.
Cancer Discov
.
2018
;
8
(
5
):
616
-
631
.
66.
De Smedt
R
,
Morscio
J
,
Reunes
L
, et al
.
Targeting cytokine- and therapy-induced PIM1 activation in preclinical models of T-cell acute lymphoblastic leukemia and lymphoma
.
Blood
.
2020
;
135
(
19
):
1685
-
1695
.
67.
Padi
SKR
,
Luevano
LA
,
An
N
, et al
.
Targeting the PIM protein kinases for the treatment of a T-cell acute lymphoblastic leukemia subset
.
Oncotarget
.
2017
;
8
(
18
):
30199
-
30216
.
68.
Bhojwani
D
,
Pui
CH
.
Relapsed childhood acute lymphoblastic leukaemia
.
Lancet Oncol
.
2013
;
14
(
6
):
e205
-
217
.
69.
Li
Y
,
Buijs-Gladdines
JGCAM
,
Cante-Barrett
K
, et al
.
IL-7 receptor mutations and steroid resistance in pediatric T cell acute lymphoblastic leukemia: a genome sequencing study
.
PLoS Med
.
2016
;
13
(
12
):
e1002200
.
70.
Meyer
LK
,
Huang
BJ
,
Delgado-Martin
C
, et al
.
Glucocorticoids paradoxically facilitate steroid resistance in T cell acute lymphoblastic leukemias and thymocytes
.
J Clin Invest
.
2020
;
130
(
2
):
863
-
876
.
71.
Britschgi
A
,
Andraos
R
,
Brinkhaus
H
, et al
.
JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer
.
Cancer Cell
.
2012
;
22
(
6
):
796
-
811
.
72.
Warsch
W
,
Kollmann
K
,
Eckelhart
E
, et al
.
High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia
.
Blood
.
2011
;
117
(
12
):
3409
-
3420
.
73.
Wang
Z
,
Mi
T
,
Bradley
HL
, et al
.
Pimozide and imipramine blue exploit mitochondrial vulnerabilities and reactive oxygen species to cooperatively target high risk acute myeloid leukemia
.
Antioxidants (Basel)
.
2021
;
10
(
6
):
956
.
You do not currently have access to this content.
Sign in via your Institution