• In a phase 1/2 trial we show that BNZ-1, a selective cytokine inhibitor, is safe and induces clinical responses in patients with T-LGLL.

  • In vivo T-LGLL cells treated with BNZ-1 have increased apoptosis in response to BNZ-1, proving the critical role of IL-15 in T-LGLL.

T-cell large granular lymphocytic leukemia (T-LGLL) is a clonal proliferation of cytotoxic T lymphocytes that can result in severe neutropenia, anemia, and bone marrow failure. Strong evidence from patients and mouse models demonstrate the critical role of interleukin-15 (IL-15) in T-LGLL pathogenesis. BNZ-1 is a pegylated peptide that selectively inhibits the binding of IL-15 and other γc cytokines to their cellular receptor complex, which has demonstrated efficacy in ex vivo T-LGLL cells and transgenic mice in preclinical studies. We conducted a phase 1/2 trial of BNZ-1 in patients with T-LGLL who had hematocytopenias (anemia or neutropenia) and required therapy. Clinical responses were assessed using hematologic parameters (improvement in hematocytopenias) based on response criteria from the Eastern Cooperative Oncology Group 5998 T-LGLL trial. BNZ-1 demonstrated clinical partial responses in 20% of patients with T-LGLL with minimal toxicity and the maximum tolerated dose was not reached. Furthermore, T-LGL leukemic cells showed significantly increased apoptosis in response to BNZ-1 treatment as early as day 2, including in clinical nonresponders, with changes that remained statistically different from baseline throughout treatment (P < .005). We report first-in-human proof that T-LGL leukemic cells are dependent on IL-15 and that intervention with IL-15 inhibition with BNZ-1 in patients with T-LGLL shows therapeutic effects, which carries important implications for the understanding of the pathogenesis of this disease. This trial was registered at www.clinicaltrials.gov as #NCT03239392.

1.
Lamy
T
,
Moignet
A
,
Loughran
TP
.
LGL leukemia: from pathogenesis to treatment
.
Blood
.
2017
;
129
(
9
):
1082
-
1094
.
2.
Lamy
T
,
Loughran
TP
.
How I treat LGL leukemia
.
Blood
.
2011
;
117
(
10
):
2764
-
2774
.
3.
Go
RS
,
Li
CY
,
Tefferi
A
,
Phyliky
RL
.
Acquired pure red cell aplasia associated with lymphoproliferative disease of granular T lymphocytes
.
Blood
.
2001
;
98
(
2
):
483
-
485
.
4.
Sokol
L
,
Loughran
TP
.
Large granular lymphocyte leukemia
.
Oncologist
.
2006
;
11
(
3
):
263
-
273
.
5.
Zhang
R
,
Shah
MV
,
Loughran
TP
.
The root of many evils: indolent large granular lymphocyte leukaemia and associated disorders
.
Hematol Oncol
.
2010
;
28
(
3
):
105
-
117
.
6.
Braunstein
Z
,
Mishra
A
,
Staub
A
,
Freud
AG
,
Porcu
P
,
Brammer
JE
.
Clinical outcomes in T-cell large granular lymphocytic leukaemia: prognostic factors and treatment response
.
Br J Haematol
.
2021
;
192
(
3
):
484
-
493
.
7.
Moignet
A
,
Hasanali
Z
,
Zambello
R
, et al
.
Cyclophosphamide as a first-line therapy in LGL leukemia
.
Leukemia
.
2014
;
28
(
5
):
1134
-
1136
.
8.
Loughran
TP
,
Zickl
L
,
Olson
TL
, et al
.
Immunosuppressive therapy of LGL leukemia: prospective multicenter phase II study by the Eastern Cooperative Oncology Group (E5998)
.
Leukemia
.
2015
;
29
(
4
):
886
-
894
.
9.
Grabstein
KH
,
Eisenman
J
,
Shanebeck
K
, et al
.
Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor
.
Science
.
1994
;
264
(
5161
):
965
-
968
.
10.
Bamford
RN
,
Grant
AJ
,
Burton
JD
, et al
.
The interleukin (IL) 2 receptor beta chain is shared by IL-2 and a cytokine, provisionally designated IL-T, that stimulates T-cell proliferation and the induction of lymphokine-activated killer cells
.
Proc Natl Acad Sci U S A
.
1994
;
91
(
11
):
4940
-
4944
.
11.
Zhang
R
,
Shah
MV
,
Yang
J
, et al
.
Network model of survival signaling in large granular lymphocyte leukemia
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
42
):
16308
-
16313
.
12.
Fehniger
TA
,
Suzuki
K
,
Ponnappan
A
, et al
.
Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells
.
J Exp Med
.
2001
;
193
(
2
):
219
-
231
.
13.
Sato
N
,
Sabzevari
H
,
Fu
S
, et al
.
Development of an IL-15-autocrine CD8 T-cell leukemia in IL-15-transgenic mice requires the cis expression of IL-15Ralpha
.
Blood
.
2011
;
117
(
15
):
4032
-
4040
.
14.
Burton
JD
,
Bamford
RN
,
Peters
C
, et al
.
A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells
.
Proc Natl Acad Sci U S A
.
1994
;
91
(
11
):
4935
-
4939
.
15.
Waldmann
TA
,
Miljkovic
MD
,
Conlon
KC
.
Interleukin-15 (dys)regulation of lymphoid homeostasis: Implications for therapy of autoimmunity and cancer
.
J Exp Med
.
2020
;
217
(
1
):
e20191062
.
16.
Mishra
A
,
Liu
S
,
Sams
GH
, et al
.
Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation
.
Cancer Cell
.
2012
;
22
(
5
):
645
-
655
.
17.
Isabelle
C
,
Boles
A
,
Chakravarti
N
,
Porcu
P
,
Brammer
J
,
Mishra
A
.
Cytokines in the pathogenesis of large granular lymphocytic leukemia
.
Front Oncol
.
2022
;
12
:
849917
.
18.
Mishra
A
,
Sullivan
L
,
Caligiuri
MA
.
Molecular pathways: interleukin-15 signaling in health and in cancer
.
Clin Cancer Res
.
2014
;
20
(
8
):
2044
-
2050
.
19.
Yang
J
,
Epling-Burnette
PK
,
Painter
JS
, et al
.
Antigen activation and impaired Fas-induced death-inducing signaling complex formation in T-large-granular lymphocyte leukemia
.
Blood
.
2008
;
111
(
3
):
1610
-
1616
.
20.
Nata
T
,
Basheer
A
,
Cocchi
F
, et al
.
Targeting the binding interface on a shared receptor subunit of a cytokine family enables the inhibition of multiple member cytokines with selectable target spectrum
.
J Biol Chem
.
2015
;
290
(
37
):
22338
-
22351
.
21.
Massoud
R
,
Enose-Akahata
Y
,
Tagaya
Y
,
Azimi
N
,
Basheer
A
,
Jacobson
S
.
Common gamma-chain blocking peptide reduces in vitro immune activation markers in HTLV-1-associated myelopathy/tropical spastic paraparesis
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
35
):
11030
-
11035
.
22.
Wang
TT
,
Yang
J
,
Zhang
Y
, et al
.
IL-2 and IL-15 blockade by BNZ-1, an inhibitor of selective gamma-chain cytokines, decreases leukemic T-cell viability
.
Leukemia
.
2019
;
33
(
5
):
1243
-
1255
.
23.
Frohna
PA
,
Ratnayake
A
,
Doerr
N
, et al
.
Results from a first-in-human study of BNZ-1, a selective multicytokine inhibitor targeting members of the common gamma (gammac) family of cytokines
.
J Clin Pharmacol
.
2020
;
60
(
2
):
264
-
273
.
24.
Olson
KC
,
Kulling
PM
,
Olson
TL
, et al
.
Vitamin D decreases STAT phosphorylation and inflammatory cytokine output in T-LGL leukemia
.
Cancer Biol Ther
.
2017
;
18
(
5
):
290
-
303
.
25.
Braunstein
Z
,
McLaughlin
E
,
Mishra
A
,
Brammer
JE
.
cyclophosphamide induces durable molecular and clinical responses in patients with relapsed t-lgl leukemia
.
Blood Adv
.
2022
;
6
(
8
):
2685
-
2687
.
26.
Koskela
HL
,
Eldfors
S
,
Ellonen
P
, et al
.
Somatic STAT3 mutations in large granular lymphocytic leukemia
.
N Engl J Med
.
2012
;
366
(
20
):
1905
-
1913
.
27.
Waldmann
TA
,
Conlon
KC
,
Stewart
DM
, et al
.
Phase 1 trial of IL-15 trans presentation blockade using humanized Mikbeta1 mAb in patients with T-cell large granular lymphocytic leukemia
.
Blood
.
2013
;
121
(
3
):
476
-
484
.
28.
Yang
J
,
LeBlanc
FR
,
Dighe
SA
, et al
.
TRAIL mediates and sustains constitutive NF-κB activation in LGL leukemia
.
Blood
.
2018
;
131
(
25
):
2803
-
2815
.
29.
Schade
AE
,
Powers
JJ
,
Wlodarski
MW
,
Maciejewski
JP
.
Phosphatidylinositol-3-phosphate kinase pathway activation protects leukemic large granular lymphocytes from undergoing homeostatic apoptosis
.
Blood
.
2006
;
107
(
12
):
4834
-
4840
.
You do not currently have access to this content.
Sign in via your Institution