• We mapped DDX41 germ line variants in 454 792 volunteers and defined the risk of MDS/AML development associated with different variant types.

  • DDX41-mutant MDS/AML evolves differently from sporadic disease, but individuals at high risk often have somatic DDX41 mutations or a high MCV.

Germ line variants in the DDX41 gene have been linked to myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) development. However, the risks associated with different variants remain unknown, as do the basis of their leukemogenic properties, impact on steady-state hematopoiesis, and links to other cancers. Here, we investigate the frequency and significance of DDX41 variants in 454 792 United Kingdom Biobank (UKB) participants and identify 452 unique nonsynonymous DNA variants in 3538 (1/129) individuals. Many were novel, and the prevalence of most varied markedly by ancestry. Among the 1059 individuals with germ line pathogenic variants (DDX41-GPV) 34 developed MDS/AML (odds ratio, 12.3 vs noncarriers). Of these, 7 of 218 had start-lost, 22 of 584 had truncating, and 5 of 257 had missense (odds ratios: 12.9, 15.1, and 7.5, respectively). Using multivariate logistic regression, we found significant associations of DDX41-GPV with MDS, AML, and family history of leukemia but not lymphoma, myeloproliferative neoplasms, or other cancers. We also report that DDX41-GPV carriers do not have an increased prevalence of clonal hematopoiesis (CH). In fact, CH was significantly more common before sporadic vs DDX41-mutant MDS/AML, revealing distinct evolutionary paths. Furthermore, somatic mutation rates did not differ between sporadic and DDX41-mutant AML genomes, ruling out genomic instability as a driver of the latter. Finally, we found that higher mean red cell volume (MCV) and somatic DDX41 mutations in blood DNA identify DDX41-GPV carriers at increased MDS/AML risk. Collectively, our findings give new insights into the prevalence and cognate risks associated with DDX41 variants, as well as the clonal evolution and early detection of DDX41-mutant MDS/AML.

1.
Polprasert
C
,
Schulze
I
,
Sekeres
MA
, et al
.
Inherited and somatic defects in DDX41 in myeloid neoplasms
.
Cancer Cell
.
2015
;
27
(
5
):
658
-
670
.
2.
Bycroft
C
,
Freeman
C
,
Petkova
D
, et al
.
The UK Biobank resource with deep phenotyping and genomic data
.
Nature
.
2018
;
562
(
7726
):
203
-
209
.
3.
Li
P
,
Brown
S
,
Williams
M
, et al
.
The genetic landscape of germline DDX41 variants predisposing to myeloid neoplasms
.
Blood
.
2022
;
140
(
7
):
716
-
755
.
4.
Quesada
AE
,
Routbort
MJ
,
DiNardo
CD
, et al
.
DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease
.
Am J Hematol
.
2019
;
94
(
7
):
757
-
766
.
5.
Rio-Machin
A
,
Vulliamy
T
,
Hug
N
, et al
.
The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants
.
Nat Commun
.
2020
;
11
(
1
):
1044
.
6.
Sebert
M
,
Passet
M
,
Raimbault
A
, et al
.
Germline DDX41 mutations define a significant entity within adult MDS/AML patients
.
Blood
.
2019
;
134
(
17
):
1441
-
1444
.
7.
Makishima
H
,
Saiki
R
,
Nannya
Y
, et al
.
Germline DDX41 mutations define a unique subtype of myeloid neoplasms
.
Blood
.
2023
;
141
(
5
):
534
-
549
.
8.
Smedley
D
,
Smith
KR
, et al;
100,000 Genomes Project Pilot Investigators
.
100,000 genomes pilot on rare-disease diagnosis in health care - preliminary report
.
N Engl J Med
.
2021
;
385
(
20
):
1868
-
1880
.
9.
Danecek
P
,
Bonfield
JK
,
Liddle
J
, et al
.
Twelve years of SAMtools and BCFtools
.
Gigascience
.
2021
;
10
(
2
):
giab008
.
10.
Yun
T
,
Li
H
,
Chang
PC
,
Lin
MF
,
Carroll
A
,
McLean
CY
.
Accurate, scalable cohort variant calls using DeepVariant and GLnexus
.
Bioinformatics
.
2021
;
36
(
24
):
5582
-
5589
.
11.
Qu
S
,
Li
B
,
Qin
T
, et al
.
Molecular and clinical features of myeloid neoplasms with somatic DDX41 mutations
.
Br J Haematol
.
2021
;
192
(
6
):
1006
-
1010
.
12.
Goyal
T
,
Tu
ZJ
,
Wang
Z
,
Cook
JR
.
Clinical and pathologic spectrum of DDX41-mutated hematolymphoid neoplasms
.
Am J Clin Pathol
.
2021
;
156
(
5
):
829
-
838
.
13.
Alkhateeb
HB
,
Nanaa
A
,
Viswanatha
D
, et al
.
Genetic features and clinical outcomes of patients with isolated and comutated DDX41-mutated myeloid neoplasms
.
Blood Adv
.
2022
;
6
(
2
):
528
-
532
.
14.
Duployez
N
,
Largeaud
L
,
Duchmann
M
, et al
.
Prognostic impact of DDX41 germline mutations in intensively treated acute myeloid leukemia patients: an ALFA-FILO study
.
Blood
.
2022
;
140
(
7
):
756
-
768
.
15.
Seabold
S
,
Perktold
J
.
Statsmodels: econometric and statistical modeling with python
.
Proceedings of the 9th Python in Science Conference
.
2010
;
57
(
61
):
92
-
96
.
16.
Virtanen
P
,
Gommers
R
,
Oliphant
TE
, et al
.
SciPy 1.0: fundamental algorithms for scientific computing in Python
.
Nat Methods
.
2020
;
17
(
3
):
261
-
272
.
17.
McKenna
A
,
Hanna
M
,
Banks
E
, et al
.
The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data
.
Genome Res
.
2010
;
20
(
9
):
1297
-
1303
.
18.
Kar
SP
,
Quiros
PM
,
Gu
M
, et al
.
Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis
.
Nat Genet
.
2022
;
54
(
8
):
1155
-
1166
.
19.
Wang
K
,
Li
M
,
Hakonarson
H
.
ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data
.
Nucleic Acids Res
.
2010
;
38
(
16
):
e164
.
20.
McLaren
W
,
Gil
L
,
Hunt
SE
, et al
.
The ensembl variant effect predictor
.
Genome Biol
.
2016
;
17
(
1
):
122
.
21.
Degasperi
A
,
Amarante
TD
,
Czarnecki
J
, et al
.
A practical framework and online tool for mutational signature analyses show inter-tissue variation and driver dependencies
.
Nat Cancer
.
2020
;
1
(
2
):
249
-
263
.
22.
Lewinsohn
M
,
Brown
AL
,
Weinel
LM
, et al
.
Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies
.
Blood
.
2016
;
127
(
8
):
1017
-
1023
.
23.
Zhang
Y
,
Wang
F
,
Chen
X
, et al
.
Next-generation sequencing reveals the presence of DDX41 mutations in acute lymphoblastic leukemia and aplastic anemia
.
EJHaem
.
2021
;
2
(
3
):
508
-
513
.
24.
Singh
RS
,
Vidhyasagar
V
,
Yang
S
, et al
.
DDX41 is required for cGAS-STING activation against DNA virus infection
.
Cell Rep
.
2022
;
39
(
8
):
110856
.
25.
Cargill
M
,
Venkataraman
R
,
Lee
S
.
DEAD-Box RNA helicases and genome stability
.
Genes (Basel)
.
2021
;
12
(
10
):
1471
.
26.
Yang
F
,
Long
N
,
Anekpuritanang
T
, et al
.
Identification and prioritization of myeloid malignancy germline variants in a large cohort of adult patients with AML
.
Blood
.
2022
;
139
(
8
):
1208
-
1221
.
27.
Singhal
D
,
Hahn
CN
,
Feurstein
S
, et al
.
Targeted gene panels identify a high frequency of pathogenic germline variants in patients diagnosed with a hematological malignancy and at least one other independent cancer
.
Leukemia
.
2021
;
35
(
11
):
3245
-
3256
.
28.
Shinriki
S
,
Matsui
H
.
Unique role of DDX41, a DEAD-box type RNA helicase, in hematopoiesis and leukemogenesis
.
Front Oncol
.
2022
;
12
:
992340
.
29.
Truong
P
,
Pimanda
JE
.
DDX41: the poster child for familial MDS/AML grows up
.
Blood
.
2023
;
141
(
5
):
447
-
449
.
30.
Abelson
S
,
Collord
G
,
Ng
SWK
, et al
.
Prediction of acute myeloid leukaemia risk in healthy individuals
.
Nature
.
2018
;
559
(
7714
):
400
-
404
.
31.
Vasilliou
GS
,
Kar
S
.
New genetic loci associated with the risk of clonal hematopoiesis
.
Nat Genet
.
2022
;
54
(
8
):
1072
-
1073
.
You do not currently have access to this content.
Sign in via your Institution