• BRD4 protects DLBCL cells from ferroptosis by positively regulating the expression of FSP1.

  • BET inhibitors increase the susceptibility of GCB-DLBCL cells to ferroptosis and thus promote the toxicity of DMF both in vitro and in vivo.

Diffuse large B-cell lymphoma (DLBCL), the most common form of non-Hodgkin lymphoma, is characterized by an aggressive clinical course. In approximately one-third of patients with DLBCL, first-line multiagent immunochemotherapy fails to produce a durable response. Molecular heterogeneity and apoptosis resistance pose major therapeutic challenges in DLBCL treatment. To circumvent apoptosis resistance, the induction of ferroptosis might represent a promising strategy for lymphoma therapy. In this study, a compound library, targeting epigenetic modulators, was screened to identify ferroptosis-sensitizing drugs. Strikingly, bromodomain and extra-terminal domain (BET) inhibitors sensitized cells of the germinal center B-cell–like (GCB) subtype of DLBCL to ferroptosis induction and the combination of BET inhibitors with ferroptosis inducers, such as dimethyl fumarate or RSL3, synergized in the killing of DLBCL cells in vitro and in vivo. On the molecular level, the BET protein BRD4 was found to be an essential regulator of ferroptosis suppressor protein 1 expression and thus to protect GCB-DLBCL cells from ferroptosis. Collectively, we identified and characterized BRD4 as an important player in ferroptosis suppression in GCB-DLBCL and provide a rationale for the combination of BET inhibitors with ferroptosis-inducing agents as a novel therapeutic approach for DLBCL treatment.

1.
Swerdlow
SH
,
Campo
E
,
Pileri
SA
, et al
.
The 2016 revision of the World Health Organization classification of lymphoid neoplasms
.
Blood
.
2016
;
127
(
20
):
2375
-
2390
.
2.
Nogai
H
,
Dorken
B
,
Lenz
G
.
Pathogenesis of non-Hodgkin's lymphoma
.
J Clin Oncol
.
2011
;
29
(
14
):
1803
-
1811
.
3.
Alizadeh
AA
,
Eisen
MB
,
Davis
RE
, et al
.
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
.
Nature
.
2000
;
403
(
6769
):
503
-
511
.
4.
Rosenwald
A
,
Wright
G
,
Chan
WC
, et al
.
The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
.
N Engl J Med
.
2002
;
346
(
25
):
1937
-
1947
.
5.
Wright
G
,
Tan
B
,
Rosenwald
A
,
Hurt
EH
,
Wiestner
A
,
Staudt
LM
.
A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma
.
Proc Natl Acad Sci U S A
.
2003
;
100
(
17
):
9991
-
9996
.
6.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes
.
Nat Med
.
2018
;
24
(
5
):
679
-
690
.
7.
Wright
GW
,
Huang
DW
,
Phelan
JD
, et al
.
A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications
.
Cancer Cell
.
2020
;
37
(
4
):
551
-
568.e14
.
8.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large b-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
9.
Coiffier
B
,
Lepage
E
,
Briere
J
, et al
.
CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma
.
N Engl J Med
.
2002
;
346
(
4
):
235
-
242
.
10.
Pfreundschuh
M
,
Trumper
L
,
Osterborg
A
, et al
.
CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group
.
Lancet Oncol
.
2006
;
7
(
5
):
379
-
391
.
11.
Gisselbrecht
C
,
Glass
B
,
Mounier
N
, et al
.
Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era
.
J Clin Oncol
.
2010
;
28
(
27
):
4184
-
4190
.
12.
Miao
Y
,
Medeiros
LJ
,
Xu-Monette
ZY
,
Li
J
,
Young
KH
.
Dysregulation of cell survival in diffuse large B cell lymphoma: mechanisms and therapeutic targets
.
Front Oncol
.
2019
;
9
:
107
.
13.
Leveille
E
,
Johnson
NA
.
Genetic events inhibiting apoptosis in diffuse large B cell lymphoma
.
Cancers (Basel)
.
2021
;
13
(
9
):
2167
.
14.
Schmitt
A
,
Xu
W
,
Bucher
P
, et al
.
Dimethyl fumarate induces ferroptosis and impairs NF-κB/STAT3 signaling in DLBCL
.
Blood
.
2021
;
138
(
10
):
871
-
884
.
15.
Yang
WS
,
SriRamaratnam
R
,
Welsch
ME
, et al
.
Regulation of ferroptotic cancer cell death by GPX4
.
Cell
.
2014
;
156
(
1-2
):
317
-
331
.
16.
Dixon
SJ
,
Lemberg
KM
,
Lamprecht
MR
, et al
.
Ferroptosis: an iron-dependent form of nonapoptotic cell death
.
Cell
.
2012
;
149
(
5
):
1060
-
1072
.
17.
Friedmann Angeli
JP
,
Krysko
DV
,
Conrad
M
.
Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion
.
Nat Rev Cancer
.
2019
;
19
(
7
):
405
-
414
.
18.
Yang
WS
,
Kim
KJ
,
Gaschler
MM
,
Patel
M
,
Shchepinov
MS
,
Stockwell
BR
.
Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
34
):
E4966
-
E4975
.
19.
Kagan
VE
,
Mao
G
,
Qu
F
, et al
.
Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis
.
Nat Chem Biol
.
2017
;
13
(
1
):
81
-
90
.
20.
Friedmann Angeli
JP
,
Schneider
M
,
Proneth
B
, et al
.
Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice
.
Nat Cell Biol
.
2014
;
16
(
12
):
1180
-
1191
.
21.
Doll
S
,
Freitas
FP
,
Shah
R
, et al
.
FSP1 is a glutathione-independent ferroptosis suppressor
.
Nature
.
2019
;
575
(
7784
):
693
-
698
.
22.
Mishima
E
,
Ito
J
,
Wu
Z
, et al
.
A non-canonical vitamin K cycle is a potent ferroptosis suppressor
.
Nature
.
2022
;
608
(
7924
):
778
-
783
.
23.
Stathis
A
,
Bertoni
F
.
BET proteins as targets for anticancer treatment
.
Cancer Discov
.
2018
;
8
(
1
):
24
-
36
.
24.
Wang
N
,
Wu
R
,
Tang
D
,
Kang
R
.
The BET family in immunity and disease
.
Signal Transduct Target Ther
.
2021
;
6
(
1
):
23
.
25.
Dawson
MA
,
Prinjha
RK
,
Dittmann
A
, et al
.
Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia
.
Nature
.
2011
;
478
(
7370
):
529
-
533
.
26.
Zuber
J
,
Shi
J
,
Wang
E
, et al
.
RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia
.
Nature
.
2011
;
478
(
7370
):
524
-
528
.
27.
Donati
B
,
Lorenzini
E
,
Ciarrocchi
A
.
BRD4 and cancer: going beyond transcriptional regulation
.
Mol Cancer
.
2018
;
17
(
1
):
164
.
28.
Schroder
S
,
Cho
S
,
Zeng
L
, et al
.
Two-pronged binding with bromodomain-containing protein 4 liberates positive transcription elongation factor b from inactive ribonucleoprotein complexes
.
J Biol Chem
.
2012
;
287
(
2
):
1090
-
1099
.
29.
Yang
Z
,
He
N
,
Zhou
Q
.
Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression
.
Mol Cell Biol
.
2008
;
28
(
3
):
967
-
976
.
30.
Yang
Z
,
Yik
JH
,
Chen
R
, et al
.
Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4
.
Mol Cell
.
2005
;
19
(
4
):
535
-
545
.
31.
Jang
MK
,
Mochizuki
K
,
Zhou
M
,
Jeong
HS
,
Brady
JN
,
Ozato
K
.
The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription
.
Mol Cell
.
2005
;
19
(
4
):
523
-
534
.
32.
Chapuy
B
,
McKeown
MR
,
Lin
CY
, et al
.
Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma
.
Cancer Cell
.
2013
;
24
(
6
):
777
-
790
.
33.
Liu
MR
,
Zhu
WT
,
Pei
DS
.
System Xc(-): a key regulatory target of ferroptosis in cancer
.
Invest New Drugs
.
2021
;
39
(
4
):
1123
-
1131
.
34.
Hans
CP
,
Weisenburger
DD
,
Greiner
TC
, et al
.
Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray
.
Blood
.
2004
;
103
(
1
):
275
-
282
.
35.
Lei
G
,
Zhuang
L
,
Gan
B
.
Targeting ferroptosis as a vulnerability in cancer
.
Nat Rev Cancer
.
2022
;
22
(
7
):
381
-
396
.
36.
Yang
WS
,
Stockwell
BR
.
Ferroptosis: death by lipid peroxidation
.
Trends Cell Biol
.
2016
;
26
(
3
):
165
-
176
.
37.
Iglehart
JK
,
York
RM
,
Modest
AP
,
Lazarus
H
,
Livingston
DM
.
Cystine requirement of continuous human lymphoid cell lines of normal and leukemic origin
.
J Biol Chem
.
1977
;
252
(
20
):
7184
-
7191
.
38.
Gout
PW
,
Buckley
AR
,
Simms
CR
,
Bruchovsky
N
.
Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug
.
Leukemia
.
2001
;
15
(
10
):
1633
-
1640
.
39.
Zhang
Y
,
Tan
H
,
Daniels
JD
, et al
.
Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model
.
Cell Chem Biol
.
2019
;
26
(
5
):
623
-
633.e9
.
40.
Mochizuki
K
,
Nishiyama
A
,
Jang
MK
, et al
.
The bromodomain protein Brd4 stimulates G1 gene transcription and promotes progression to S phase
.
J Biol Chem
.
2008
;
283
(
14
):
9040
-
9048
.
41.
Shorstova
T
,
Foulkes
WD
,
Witcher
M
.
Achieving clinical success with BET inhibitors as anti-cancer agents
.
Br J Cancer
.
2021
;
124
(
9
):
1478
-
1490
.
42.
Muhar
M
,
Ebert
A
,
Neumann
T
, et al
.
SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis
.
Science
.
2018
;
360
(
6390
):
800
-
805
.
43.
Sui
S
,
Zhang
J
,
Xu
S
,
Wang
Q
,
Wang
P
,
Pang
D
.
Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells
.
Cell Death Dis
.
2019
;
10
(
5
):
331
.
44.
Verma
N
,
Vinik
Y
,
Saroha
A
, et al
.
Synthetic lethal combination targeting BET uncovered intrinsic susceptibility of TNBC to ferroptosis
.
Sci Adv
.
2020
;
6
(
34
):
eaba8968
.
45.
Bersuker
K
,
Hendricks
JM
,
Li
Z
, et al
.
The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis
.
Nature
.
2019
;
575
(
7784
):
688
-
692
.
46.
Kalkavan
H
,
Chen
MJ
,
Crawford
JC
, et al
.
Sublethal cytochrome c release generates drug-tolerant persister cells
.
Cell
.
2022
;
185
(
18
):
3356
-
3374.e22
.
47.
Amorim
S
,
Stathis
A
,
Gleeson
M
, et al
.
Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study
.
Lancet Haematol
.
2016
;
3
(
4
):
e196
-
e204
.
48.
Berthon
C
,
Raffoux
E
,
Thomas
X
, et al
.
Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study
.
Lancet Haematol
.
2016
;
3
(
4
):
e186
-
e195
.
49.
Lewin
J
,
Soria
JC
,
Stathis
A
, et al
.
Phase Ib trial with birabresib, a small-molecule inhibitor of bromodomain and extraterminal proteins, in patients with selected advanced solid tumors
.
J Clin Oncol
.
2018
;
36
(
30
):
3007
-
3014
.
You do not currently have access to this content.
Sign in via your Institution