• Multihit TP53MT represents a novel very high-risk group in patients with myelofibrosis undergoing HSCT.

  • Multihit TP53MT was particularly associated with high rates of leukemic transformation early after transplantation.

TP53 mutations (TP53MTs) have been associated with poor outcomes in various hematologic malignancies, but no data exist regarding its role in patients with myelofibrosis undergoing hematopoietic stem cell transplantation (HSCT). Here, we took advantage of a large international multicenter cohort to evaluate the role of TP53MT in this setting. Among 349 included patients, 49 (13%) had detectable TP53MT, of whom 30 showed a multihit configuration. Median variant allele frequency was 20.3%. Cytogenetic risk was favorable (71%), unfavorable (23%), and very high (6%), with complex karyotype present in 36 patients (10%). Median survival of patients with TP53MT was 1.5 vs 13.5 years for those with wild-type TP53 (TP53WT; P < .001). Outcome was driven by multihit TP53MT constellation (P < .001), showing 6-year survival of 56% for individuals with single-hit vs 25% for those with multihit TP53MT vs 64% for those with TP53WT. Outcome was independent of current transplantation-specific risk factors and conditioning intensity. Similarly, cumulative incidence of relapse was 17% for single-hit vs 52% for multihit vs 21% for TP53WT. Ten patients with TP53MT (20%) presented as leukemic transformation vs only 7 (2%) in the TP53WT group (P < .001). Out of the 10 patients with TP53MT, 8 showed multihit constellation. Median time to leukemic transformation was shorter for multihit and single-hit TP53MT (0.7 and 0.5 years, respectively) vs 2.5 years for TP53WT. In summary, multihit TP53MT represents a very high-risk group in patients with myelofibrosis who are undergoing HSCT, whereas single-hit TP53MT alone showed similar outcome to patients with nonmutated TP53, informing prognostication for survival and relapse together with current transplantation-specific tools.

1.
Leroy
B
,
Anderson
M
,
Soussi
T
.
TP53 mutations in human cancer: database reassessment and prospects for the next decade
.
Hum Mutat
.
2014
;
35
(
6
):
672
-
688
.
2.
Agupitan
AD
,
Neeson
P
,
Williams
S
,
Howitt
J
,
Haupt
S
,
Haupt
Y
.
P53: a guardian of immunity becomes its saboteur through mutation
.
Int J Mol Sci
.
2020
;
21
(
10
):
3452
.
3.
Levine
AJ
.
p53: 800 million years of evolution and 40 years of discovery
.
Nat Rev Cancer
.
2020
;
20
(
8
):
471
-
480
.
4.
Petitjean
A
,
Mathe
E
,
Kato
S
, et al
.
Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database
.
Hum Mutat
.
2007
;
28
(
6
):
622
-
629
.
5.
Hu
J
,
Cao
J
,
Topatana
W
, et al
.
Targeting mutant p53 for cancer therapy: direct and indirect strategies
.
J Hematol Oncol
.
2021
;
14
(
1
):
157
.
6.
Bernard
E
,
Nannya
Y
,
Hasserjian
RP
, et al
.
Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes
.
Nat Med
.
2020
;
26
(
10
):
1549
-
1556
.
7.
Lindsley
RC
,
Saber
W
,
Mar
BG
, et al
.
Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation
.
N Engl J Med
.
2017
;
376
(
6
):
536
-
547
.
8.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood
.
2016
;
127
(
20
):
2391
-
2405
.
9.
Gagelmann
N
,
Kröger
N
.
Improving allogeneic stem cell transplantation in myelofibrosis
.
Int J Hematol
.
2022
;
115
(
5
):
619
-
625
.
10.
Passamonti
F
,
Giorgino
T
,
Mora
B
, et al
.
A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis
.
Leukemia
.
2017
;
31
(
12
):
2726
-
2731
.
11.
Vannucchi
AM
,
Lasho
TL
,
Guglielmelli
P
, et al
.
Mutations and prognosis in primary myelofibrosis
.
Leukemia
.
2013
;
27
(
9
):
1861
-
1869
.
12.
Gagelmann
N
,
Ditschkowski
M
,
Bogdanov
R
, et al
.
Comprehensive clinical-molecular transplant scoring system for myelofibrosis undergoing stem cell transplantation
.
Blood
.
2019
;
133
(
20
):
2233
-
2242
.
13.
Shahin
OA
,
Chifotides
HT
,
Bose
P
,
Masarova
L
,
Verstovsek
S
.
Accelerated phase of myeloproliferative neoplasms
.
Acta Haematol
.
2021
;
144
(
5
):
484
-
499
.
14.
Gagelmann
N
,
Salit
RB
,
Schroeder
T
, et al
.
High molecular and cytogenetic risk in myelofibrosis does not benefit from higher intensity conditioning before hematopoietic cell transplantation: an International Collaborative Analysis
.
Hemasphere
.
2022
;
6
(
10
):
e784
.
15.
Samuelson Bannow
BT
,
Salit
RB
,
Storer
BE
, et al
.
Hematopoietic cell transplantation for myelofibrosis: the dynamic international prognostic scoring system plus risk predicts post-transplant outcomes
.
Biol Blood Marrow Transplant
.
2018
;
24
(
2
):
386
-
392
.
16.
Passamonti
F
,
Cervantes
F
,
Vannucchi
AM
, et al
.
A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment)
.
Blood
.
2010
;
115
(
9
):
1703
-
1708
.
17.
Guglielmelli
P
,
Lasho
TL
,
Rotunno
G
, et al
.
MIPSS70: mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis
.
J Clin Oncol
.
2018
;
36
(
4
):
310
-
318
.
18.
Kröger
N
,
Panagiota
V
,
Badbaran
A
, et al
.
Impact of molecular genetics on outcome in myelofibrosis patients after allogeneic stem cell transplantation
.
Biol Blood Marrow Transplant
.
2017
;
23
(
7
):
1095
-
1101
.
19.
Thol
F
,
Bollin
R
,
Gehlhaar
M
, et al
.
Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications
.
Blood
.
2014
;
123
(
6
):
914
-
920
.
20.
Panagiota
V
,
Thol
F
,
Markus
B
, et al
.
Prognostic effect of calreticulin mutations in patients with myelofibrosis after allogeneic hematopoietic stem cell transplantation
.
Leukemia
.
2014
;
28
(
7
):
1552
-
1555
.
21.
Awada
H
,
Durmaz
A
,
Gurnari
C
, et al
.
Machine learning integrates genomic signatures for subclassification beyond primary and secondary acute myeloid leukemia
.
Blood
.
2021
;
138
(
19
):
1885
-
1895
.
22.
Tefferi
A
,
Guglielmelli
P
,
Nicolosi
M
, et al
.
GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis
.
Leukemia
.
2018
;
32
(
7
):
1631
-
1642
.
23.
Arber
DA
,
Orazi
A
,
Hasserjian
RP
, et al
.
International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data
.
Blood
.
2022
;
140
(
11
):
1200
-
1228
.
24.
Blanche
P
,
Dartigues
J-F
,
Jacqmin-Gadda
H
.
Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks
.
Stat Med
.
2013
;
32
(
30
):
5381
-
5397
.
25.
Grob
T
,
Al Hinai
ASA
,
Sanders
MA
, et al
.
Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome
.
Blood
.
2022
;
139
(
15
):
2347
-
2354
.
26.
Loke
J
,
Labopin
M
,
Craddock
C
, et al
.
Additional cytogenetic features determine outcome in patients allografted for TP53 mutant acute myeloid leukemia
.
Cancer
.
2022
;
128
(
15
):
2922
-
2931
.
27.
Grinfeld
J
,
Nangalia
J
,
Baxter
EJ
, et al
.
Classification and personalized prognosis in myeloproliferative neoplasms
.
N Engl J Med
.
2018
;
379
(
15
):
1416
-
1430
.
28.
Luque Paz
D
,
Riou
J
,
Verger
E
, et al
.
Genomic analysis of primary and secondary myelofibrosis redefines the prognostic impact of ASXL1 mutations: a FIM study
.
Blood Adv
.
2021
;
5
:
1442
-
1451
.
29.
Willman
CL
.
SH2B3: a new leukemia predisposition gene
.
Blood
.
2013
;
122
(
14
):
2293
-
2295
.
30.
Mega
JL
,
Stitziel
NO
,
Smith
JG
, et al
.
Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials
.
Lancet
.
2015
;
385
(
9984
):
2264
-
2271
.
31.
Baran-Marszak
F
,
Magdoud
H
,
Desterke
C
, et al
.
Expression level and differential JAK2-V617F-binding of the adaptor protein Lnk regulates JAK2-mediated signals in myeloproliferative neoplasms
.
Blood
.
2010
;
116
(
26
):
5961
-
5971
.
32.
Yoshizato
T
,
Nannya
Y
,
Atsuta
Y
, et al
.
Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation
.
Blood
.
2017
;
129
(
17
):
2347
-
2358
.
33.
Gurnari
C
,
Pagliuca
S
,
Prata
PH
, et al
.
Clinical and molecular determinants of clonal evolution in aplastic anemia and paroxysmal nocturnal hemoglobinuria
.
J Clin Oncol
.
2023
;
41
(
1
):
132
-
142
.
34.
Lindsley
RC
,
Mar
BG
,
Mazzola
E
, et al
.
Acute myeloid leukemia ontogeny is defined by distinct somatic mutations
.
Blood
.
2015
;
125
(
9
):
1367
-
1376
.
35.
Khoury
JD
,
Solary
E
,
Abla
O
, et al
.
The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms
.
Leukemia
.
2022
;
36
(
7
):
1703
-
1719
.
36.
Montalban-Bravo
G
,
Kanagal-Shamanna
R
,
Benton
CB
, et al
.
Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes
.
Blood Adv
.
2020
;
4
(
3
):
482
-
495
.
37.
Short
NJ
,
Montalban-Bravo
G
,
Hwang
H
, et al
.
Prognostic and therapeutic impacts of mutant TP53 variant allelic frequency in newly diagnosed acute myeloid leukemia
.
Blood Adv
.
2020
;
4
(
22
):
5681
-
5689
.
38.
Prochazka
KT
,
Pregartner
G
,
Rücker
FG
, et al
.
Clinical implications of subclonal TP53 mutations in acute myeloid leukemia
.
Haematologica
.
2019
;
104
(
3
):
516
-
523
.
39.
DiNardo
CD
,
Pratz
K
,
Pullarkat
V
, et al
.
Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia
.
Blood
.
2019
;
133
(
1
):
7
-
17
.
40.
Gangat
N
,
Guglielmelli
P
,
Szuber
N
, et al
.
Venetoclax with azacitidine or decitabine in blast-phase myeloproliferative neoplasm: a multicenter series of 32 consecutive cases
.
Am J Hematol
.
2021
;
96
(
7
):
781
-
789
.
41.
Wolschke
C
,
Badbaran
A
,
Zabelina
T
, et al
.
Impact of molecular residual disease post allografting in myelofibrosis patients
.
Bone Marrow Transplant
.
2017
;
52
(
11
):
1526
-
1529
.
42.
Kim
T
,
Moon
JH
,
Ahn
J-S
, et al
.
Next-generation sequencing-based posttransplant monitoring of acute myeloid leukemia identifies patients at high risk of relapse
.
Blood
.
2018
;
132
(
15
):
1604
-
1613
.
43.
Kröger
NM
,
Deeg
JH
,
Olavarria
E
, et al
.
Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group
.
Leukemia
.
2015
;
29
(
11
):
2126
-
2133
.
44.
Kröger
N
,
Alchalby
H
,
Klyuchnikov
E
, et al
.
JAK2-V617F-triggered preemptive and salvage adoptive immunotherapy with donor-lymphocyte infusion in patients with myelofibrosis after allogeneic stem cell transplantation
.
Blood
.
2009
;
113
(
8
):
1866
-
1868
.
45.
Klyuchnikov
E
,
Holler
E
,
Bornhäuser
M
, et al
.
Donor lymphocyte infusions and second transplantation as salvage treatment for relapsed myelofibrosis after reduced-intensity allografting
.
Br J Haematol
.
2012
;
159
(
2
):
172
-
181
.
46.
Sallman
DA
,
DeZern
AE
,
Garcia-Manero
G
, et al
.
Eprenetapopt (APR-246) and azacitidine in TP53-mutant myelodysplastic syndromes
.
J Clin Oncol
.
2021
;
39
(
14
):
1584
-
1594
.
47.
Sallman
DA
,
McLemore
AF
,
Aldrich
AL
, et al
.
TP53 mutations in myelodysplastic syndromes and secondary AML confer an immunosuppressive phenotype
.
Blood
.
2020
;
136
(
24
):
2812
-
2823
.
48.
Daver
N
,
Garcia-Manero
G
,
Basu
S
, et al
.
Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study
.
Cancer Discov
.
2019
;
9
(
3
):
370
-
383
.
49.
Hobbs
G
,
Cimen Bozkus
C
,
Moshier
E
, et al
.
PD-1 inhibition in advanced myeloproliferative neoplasms
.
Blood Adv
.
2021
;
5
(
23
):
5086
-
5097
.
50.
Santos
FPS
,
Getta
B
,
Masarova
L
, et al
.
Prognostic impact of RAS-pathway mutations in patients with myelofibrosis
.
Leukemia
.
2020
;
34
(
3
):
799
-
810
.
51.
Guglielmelli
P
,
Coltro
G
,
Mannelli
F
, et al
.
ASXL1 mutations are prognostically significant in PMF, but not MF following essential thrombocythemia or polycythemia vera
.
Blood Adv
.
2022
;
6
(
9
):
2927
-
2931
.
52.
McLornan
D
,
Szydlo
R
,
Koster
L
, et al
.
Myeloablative and reduced-intensity conditioned allogeneic hematopoietic stem cell transplantation in myelofibrosis: a retrospective study by the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplantation
.
Biol Blood Marrow Transplant
.
2019
;
25
(
11
):
2167
-
2171
.
You do not currently have access to this content.
Sign in via your Institution