• SP nanoparticles improve thrombus formation on collagen using blood from VWD murine models.

  • Treatment with SP nanoparticles reduces blood loss in murine models of VWD.

The lack of innovation in von Willebrand disease (VWD) originates from many factors including the complexity and heterogeneity of the disease but also from a lack of recognition of the impact of the bleeding symptoms experienced by patients with VWD. Recently, a few research initiatives aiming to move past replacement therapies using plasma-derived or recombinant von Willebrand factor (VWF) concentrates have started to emerge. Here, we report an original approach using synthetic platelet (SP) nanoparticles for the treatment of VWD type 2B (VWD-2B) and severe VWD (type 3 VWD). SP are liposomal nanoparticles decorated with peptides enabling them to concomitantly bind to collagen, VWF, and activated platelets. In vitro, using various microfluidic assays, we show the efficacy of SPs to improve thrombus formation in VWF-deficient condition (with human platelets) or using blood from mice with VWD-2B and deficient VWF (VWF-KO, ie, type 3 VWD). In vivo, using a tail-clip assay, SP treatment reduced blood loss by 35% in mice with VWD-2B and 68% in mice with VWF-KO. Additional studies using nanoparticles decorated with various combinations of peptides demonstrated that the collagen-binding peptide, although not sufficient by itself, was crucial for SP efficacy in VWD-2B; whereas all 3 peptides appeared necessary for mice with VWF-KO. Clot imaging by immunofluorescence and scanning electron microscopy revealed that SP treatment of mice with VWF-KO led to a strong clot, similar to those obtained in wild-type mice. Altogether, our results show that SP could represent an attractive therapeutic alternative for VWD, especially considering their long half-life and stability.

1.
Denis
CV
,
Susen
S
,
Lenting
PJ
.
von Willebrand disease: what does the future hold?
.
Blood
.
2021
;
137
(
17
):
2299
-
2306
.
2.
Casari
C
,
Berrou
E
,
Lebret
M
, et al
.
von Willebrand factor mutation promotes thrombocytopathy by inhibiting integrin alphaIIbbeta3
.
J Clin Invest
.
2013
;
123
(
12
):
5071
-
5081
.
3.
Federici
AB
,
Mannucci
PM
,
Castaman
G
, et al
.
Clinical and molecular predictors of thrombocytopenia and risk of bleeding in patients with von Willebrand disease type 2B: a cohort study of 67 patients
.
Blood
.
2009
;
113
(
3
):
526
-
534
.
4.
Kauskot
A
,
Poirault-Chassac
S
,
Adam
F
, et al
.
LIM kinase/cofilin dysregulation promotes macrothrombocytopenia in severe von Willebrand disease-type 2B
.
JCI Insight
.
2016
;
1
(
16
):
e88643
.
5.
Kruse-Jarres
R
,
Johnsen
JM
.
How I treat type 2B von Willebrand disease
.
Blood
.
2018
;
131
(
12
):
1292
-
1300
.
6.
Casari
C
,
Favier
R
,
Legendre
P
, et al
.
A thrombopoietin receptor agonist to rescue an unusual platelet transfusion-induced reaction in a p.V1316M-associated von Willebrand disease type 2B patient
.
Ther Adv Hematol
.
2022
;
13
:
20406207221076812
.
7.
Espitia
O
,
Ternisien
C
,
Agard
C
,
Boisseau
P
,
Denis
CV
,
Fouassier
M
.
Use of a thrombopoietin receptor agonist in von Willebrand disease type 2B (p.V1316M) with severe thrombocytopenia and intracranial hemorrhage
.
Platelets
.
2017
;
28
(
5
):
518
-
520
.
8.
Haji-Valizadeh
H
,
Modery-Pawlowski
CL
,
Sen Gupta
A
.
A factor VIII-derived peptide enables von Willebrand factor (VWF)-binding of artificial platelet nanoconstructs without interfering with VWF-adhesion of natural platelets
.
Nanoscale
.
2014
;
6
(
9
):
4765
-
4773
.
9.
Ravikumar
M
,
Modery
CL
,
Wong
TL
,
Dzuricky
M
,
Sen Gupta
A
.
Mimicking adhesive functionalities of blood platelets using ligand-decorated liposomes
.
Bioconjug Chem
.
2012
;
23
(
6
):
1266
-
1275
.
10.
Ravikumar
M
,
Modery
CL
,
Wong
TL
,
Gupta
AS
.
Peptide-decorated liposomes promote arrest and aggregation of activated platelets under flow on vascular injury relevant protein surfaces in vitro
.
Biomacromolecules
.
2012
;
13
(
5
):
1495
-
1502
.
11.
Luc
NF
,
Rohner
N
,
Girish
A
,
Didar Singh Sekhon
U
,
Neal
MD
,
Sen Gupta
A
.
Bioinspired artificial platelets: past, present and future
.
Platelets
.
2022
;
33
(
1
):
35
-
47
.
12.
Sekhon
UDS
,
Swingle
K
,
Girish
A
, et al
.
Platelet-mimicking procoagulant nanoparticles augment hemostasis in animal models of bleeding
.
Sci Transl Med
.
2022
;
14
(
629
):
eabb8975
.
13.
Shukla
M
,
Sekhon
UDS
,
Betapudi
V
, et al
.
In vitro characterization of SynthoPlate (synthetic platelet) technology and its in vivo evaluation in severely thrombocytopenic mice
.
J Thromb Haemost
.
2017
;
15
(
2
):
375
-
387
.
14.
Dyer
MR
,
Hickman
D
,
Luc
N
, et al
.
Intravenous administration of synthetic platelets (SynthoPlate) in a mouse liver injury model of uncontrolled hemorrhage improves hemostasis
.
J Trauma Acute Care Surg
.
2018
;
84
(
6
):
917
-
923
.
15.
Hickman
DA
,
Pawlowski
CL
,
Shevitz
A
, et al
.
Intravenous synthetic platelet (SynthoPlate) nanoconstructs reduce bleeding and improve 'golden hour' survival in a porcine model of traumatic arterial hemorrhage
.
Sci Rep
.
2018
;
8
(
1
):
3118
.
16.
Adam
F
,
Casari
C
,
Prevost
N
, et al
.
A genetically-engineered von Willebrand disease type 2B mouse model displays defects in hemostasis and inflammation
.
Sci Rep
.
2016
;
6
:
26306
.
17.
Denis
C
,
Methia
N
,
Frenette
PS
, et al
.
A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis
.
Proc Natl Acad Sci U S A
.
1998
;
95
(
16
):
9524
-
9529
.
18.
Zhang
H
.
Thin-film hydration followed by extrusion method for liposome preparation
.
Methods Mol Biol
.
2017
;
1522
:
17
-
22
.
19.
Hosokawa
K
,
Ohnishi
T
,
Fukasawa
M
, et al
.
A microchip flow-chamber system for quantitative assessment of the platelet thrombus formation process
.
Microvasc Res
.
2012
;
83
(
2
):
154
-
161
.
20.
Hosokawa
K
,
Ohnishi
T
,
Kondo
T
, et al
.
A novel automated microchip flow-chamber system to quantitatively evaluate thrombus formation and antithrombotic agents under blood flow conditions
.
J Thromb Haemost
.
2011
;
9
(
10
):
2029
-
2037
.
21.
Sueta
D
,
Kaikita
K
,
Okamoto
N
, et al
.
A novel quantitative assessment of whole blood thrombogenicity in patients treated with a non-vitamin K oral anticoagulant
.
Int J Cardiol
.
2015
;
197
:
98
-
100
.
22.
Adam
F
,
Kauskot
A
,
Nurden
P
, et al
.
Platelet JNK1 is involved in secretion and thrombus formation
.
Blood
.
2010
;
115
(
20
):
4083
-
4092
.
23.
Ferriere
S
,
Peyron
I
,
Christophe
OD
, et al
.
A hemophilia A mouse model for the in vivo assessment of emicizumab function
.
Blood
.
2020
;
136
(
6
):
740
-
748
.
24.
Johansen
PB
,
Tranholm
M
,
Haaning
J
,
Knudsen
T
.
Development of a tail vein transection bleeding model in fully anaesthetized haemophilia A mice--characterization of two novel FVIII molecules
.
Haemophilia
.
2016
;
22
(
4
):
625
-
631
.
25.
Takaku
Y
,
Suzuki
H
,
Kawasaki
H
, et al
.
A modified ‘NanoSuit(R)’ preserves wet samples in high vacuum: direct observations on cells and tissues in field-emission scanning electron microscopy
.
R Soc Open Sci
.
2017
;
4
(
3
):
160887
.
26.
Provenzale
I
,
Brouns
SLN
,
van der Meijden
PEJ
,
Swieringa
F
,
Heemskerk
JWM
.
Whole blood based multiparameter assessment of thrombus formation in standard microfluidic devices to proxy in vivo haemostasis and thrombosis
.
Micromachines (Basel)
.
2019
;
10
(
11
):
787
.
27.
Casari
C
,
Paul
DS
,
Susen
S
, et al
.
Protein kinase C signaling dysfunction in von Willebrand disease (p.V1316M) type 2B platelets
.
Blood Adv
.
2018
;
2
(
12
):
1417
-
1428
.
28.
Rayes
J
,
Hollestelle
MJ
,
Legendre
P
, et al
.
Mutation and ADAMTS13-dependent modulation of disease severity in a mouse model for von Willebrand disease type 2B
.
Blood
.
2010
;
115
(
23
):
4870
-
4877
.
29.
Girish
A
,
Jolly
K
,
Alsaadi
N
, et al
.
Platelet-inspired intravenous nanomedicine for injury-targeted direct delivery of thrombin to augment hemostasis in coagulopathies
.
ACS Nano
.
2022
;
16
(
10
):
16292
-
16313
.
30.
Saenko
EL
,
Shima
M
,
Rajalakshmi
KJ
,
Scandella
D
.
A role for the C2 domain of factor VIII in binding to von Willebrand factor
.
J Biol Chem
.
1994
;
269
(
15
):
11601
-
11605
.
31.
Lenting
PJ
,
Westein
E
,
Terraube
V
, et al
.
An experimental model to study the in vivo survival of von Willebrand factor. Basic aspects and application to the R1205H mutation
.
J Biol Chem
.
2004
;
279
(
13
):
12102
-
12109
.
You do not currently have access to this content.
Sign in via your Institution